ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-flat plasmonic bands in twisted bilayer graphene

150   0   0.0 ( 0 )
 نشر من قبل Tobias Stauber
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively random-phase approximation. For small enough twist angles $thetalesssim 2^circ$ we find weakly Landau damped interband plasmons, i.~e., collective excitonic modes which exist in the undoped material, with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance and we argue that these excitations arise from the interaction of quasi-localised states with the incident light field. These predictions can be tested by nano-infrared imaging and possible applications include a perfect lens without the need of left-handed materials.



قيم البحث

اقرأ أيضاً

We present electronic structure calculations of twisted double bilayer graphene (TDBG): A tetralayer graphene structure composed of two AB-stacked graphene bilayers with a relative rotation angle between them. Using first-principles calculations, we find that TDBG is semiconducting with a band gap that depends on the twist angle, that can be tuned by an external electric field. The gap is consistent with TDBG symmetry and its magnitude is related to surface effects, driving electron transfer from outer to inner layers. The surface effect competes with an energy upshift of localized states at inner layers, giving rise to the peculiar angle dependence of the band gap, which reduces at low angles. For these low twist angles, the TDBG develops flat bands, in which electrons in the inner layers are localized at the AA regions, as in twisted bilayer graphene.
Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which give a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allo ws changing the Fermi level and hence the electron density and also allows tuning the interlayer potential, giving further control over band gaps. Here, we demonstrate that by applying hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically non-trivial band gap opens at the charge neutrality point at zero displacement field.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp haapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
We investigate the band structure of twisted monolayer-bilayer graphene (tMBG), or twisted graphene on bilayer graphene (tGBG), as a function of twist angles and perpendicular electric fields in search of optimum conditions for achieving isolated nea rly flat bands. Narrow bandwidths comparable or smaller than the effective Coulomb energies satisfying $U_{textrm{eff}} /W gtrsim 1$ are expected for twist angles in the range of $0.3^{circ} sim 1.5^{circ}$, more specifically in islands around $theta sim 0.5^{circ}, , 0.85^{circ}, ,1.3^{circ}$ for appropriate perpendicular electric field magnitudes and directions. The valley Chern numbers of the electron-hole asymmetric bands depend intrinsically on the details of the hopping terms in the bilayer graphene, and extrinsically on factors like electric fields or average staggered potentials in the graphene layer aligned with the contacting hexagonal boron nitride substrate. This tunability of the band isolation, bandwidth, and valley Chern numbers makes of tMBG a more versatile system than twisted bilayer graphene for finding nearly flat bands prone to strong correlations.
Magic-angle twisted bilayer graphene (MA-TBG) exhibits intriguing quantum phase transitions triggered by enhanced electron-electron interactions when its flat-bands are partially filled. However, the phases themselves and their connection to the puta tive non-trivial topology of the flat bands are largely unexplored. Here we report transport measurements revealing a succession of doping-induced Lifshitz transitions that are accompanied by van Hove singularities (VHS) which facilitate the emergence of correlation-induced gaps and topologically non-trivial sub-bands. In the presence of a magnetic field, well quantized Hall plateaus at filling of 1, 2, 3 carriers per moire-cell reveal the sub-band topology and signal the emergence of Chern insulators with Chern-numbers, ! = !, !, !, respectively. Surprisingly, for magnetic fields exceeding 5T we observe a VHS at a filling of 3.5, suggesting the possibility of a fractional Chern insulator. This VHS is accompanied by a crossover from low-temperature metallic, to high-temperature insulating behavior, characteristic of entropically driven Pomeranchuk-like transitions,
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا