ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass-Discrepancy Acceleration Relation: a Natural Outcome of Galaxy Formation in Cold Dark Matter halos

95   0   0.0 ( 0 )
 نشر من قبل Aaron Ludlow Ph.D.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the total and baryonic acceleration profiles of a set of well-resolved galaxies identified in the EAGLE suite of hydrodynamic simulations. Our runs start from the same initial conditions but adopt different prescriptions for unresolved stellar and AGN feedback, resulting in diverse populations of galaxies by the present day. Some of them reproduce observed galaxy scaling relations, while others do not. However, regardless of the feedback implementation, all of our galaxies follow closely a simple relationship between the total and baryonic acceleration profiles, consistent with recent observations of rotationally supported galaxies. The relation has small scatter: different feedback implementations -- which produce different galaxy populations -- mainly shift galaxies along the relation, rather than perpendicular to it. Furthermore, galaxies exhibit a characteristic acceleration, $g_{dagger}$, above which baryons dominate the mass budget, as observed. These observations, consistent with simple modified Newtonian dynamics, can be accommodated within the standard cold dark matter paradigm.

قيم البحث

اقرأ أيضاً

We examine the origin of the mass discrepancy--radial acceleration relation (MDAR) of disk galaxies. This is a tight empirical correlation between the disk centripetal acceleration and that expected from the baryonic component. The MDAR holds for mos t radii probed by disk kinematic tracers, regardless of galaxy mass or surface brightness. The relation has two characteristic accelerations; $a_0$, above which all galaxies are baryon-dominated; and $a_{rm min}$, an effective minimum aceleration probed by kinematic tracers in isolated galaxies. We use a simple model to show that these trends arise naturally in $Lambda$CDM. This is because: (i) disk galaxies in $Lambda$CDM form at the centre of dark matter haloes spanning a relatively narrow range of virial mass; (ii) cold dark matter halo acceleration profiles are self-similar and have a broad maximum at the centre, reaching values bracketed precisely by $a_{rm min}$ and $a_0$ in that mass range; and (iii) halo mass and galaxy size scale relatively tightly with the baryonic mass of a galaxy in any successful $Lambda$CDM galaxy formation model. Explaining the MDAR in $Lambda$CDM does not require modifications to the cuspy inner mass profiles of dark haloes, although these may help to understand the detailed rotation curves of some dwarf galaxies and the origin of extreme outliers from the main relation. The MDAR is just a reflection of the self-similar nature of cold dark matter haloes and of the physical scales introduced by the galaxy formation process.
The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter ( DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. We present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. Direct detection constraints require our DM particles to be either very light ($m << m_b$) or very heavy ($m >> m_b$), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. Here, we focus on the heavy DM/cooling case as it is technically simpler. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section.
122 - Aaron D. Ludlow 2013
We use the Millennium Simulation series to investigate the mass and redshift dependence of the concentration of equilibrium cold dark matter (CDM) halos. We extend earlier work on the relation between halo mass profiles and assembly histories to show how the latter may be used to predict concentrations for halos of all masses and at any redshift. Our results clarify the link between concentration and the ``collapse redshift of a halo as well as why concentration depends on mass and redshift solely through the dimensionless ``peak height mass parameter, $ u(M,z)=delta_{rm crit}(z)/sigma(M,z)$. We combine these results with analytic mass accretion histories to extrapolate the $c(M,z)$ relations to mass regimes difficult to reach through direct simulation. Our model predicts that, at given $z$, $c(M)$ should deviate systematically from a simple power law at high masses, where concentrations approach a constant value, and at low masses, where concentrations are substantially lower than expected from extrapolating published empirical fits. This correction may reduce the expected self-annihilation boost factor from substructure by about one order of magnitude. The model also reproduces the $c(M,z)$ dependence on cosmological parameters reported in earlier work, and thus provides a simple and robust account of the relation between cosmology and the mass-concentration-redshift relation of CDM halos.
We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter with the observed gravitational acceleration, using weak lensing measurements from the fourth data release of the Kilo-Degree Survey. These measurements extend the radial acceleration relation (RAR) by 2 decades into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: MOND and Verlindes emergent gravity. We find that the measured RAR agrees well with the MG predictions. In addition, we find a difference of at least $6sigma$ between the RARs of early- and late-type galaxies (split by S{e}rsic index and $u-r$ colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour. The difference might be explained if only the early-type galaxies have significant ($M_{gas} approx M_*$) circumgalactic gaseous haloes. The observed behaviour is also expected in $Lambda$CDM models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a $Lambda$CDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys will be able to further distinguish between MG and $Lambda$CDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.
Mass models of 15 nearby dwarf and spiral galaxies are presented. The galaxies are selected to be homogeneous in terms of the method used to determine their distances, the sampling of their rotation curves (RCs) and the mass-to-light ratio (M/L) of t heir stellar contributions, which will minimize the uncertainties on the mass model results. Those RCs are modeled using the MOdified Newtonian Dynamics (MOND) prescription and the observationally motivated pseudo-isothermal (ISO) dark matter (DM) halo density distribution. For the MOND models with fixed (M/L), better fits are obtained when the constant a$_{0}$ is allowed to vary, giving a mean value of (1.13 $pm$ 0.50) $times$ 10$^{-8}$ cm s$^{-2}$, compared to the standard value of 1.21 $times$ 10$^{-8}$ cm s$^{-2}$. Even with a$_{0}$ as a free parameter, MOND provides acceptable fits (reduced $chi^{2}_{r}$ $<$ 2) for only 60% (9/15) of the sample. The data suggest that galaxies with higher central surface brightnesses tend to favor higher values of the constant a$_{0}$. This poses a serious challenge to MOND since a$_{0}$ should be a universal constant. For the DM models, our results confirm that the DM halo surface density of ISO models is nearly constant at $ rho_{0} R_{C} sim 120 M_{odot} pc^{-2}$. This means that if the (M/L) is determined by stellar population models, ISO DM models are left with only one free parameter, the DM halo central surface density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا