ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-aligned local electrolyte gating of 2D materials with nanoscale resolution

602   0   0.0 ( 0 )
 نشر من قبل Cheng Peng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the effort to make 2D materials-based devices smaller, faster, and more efficient, it is important to control charge carrier at lengths approaching the nanometer scale. Traditional gating techniques based on capacitive coupling through a gate dielectric cannot generate strong and uniform electric fields at this scale due to divergence of the fields in dielectrics. This field divergence limits the gating strength, boundary sharpness, and pitch size of periodic structures, and restricts possible geometries of local gates (due to wire packaging), precluding certain device concepts, such as plasmonics and transformation optics based on metamaterials. Here we present a new gating concept based on a dielectric-free self-aligned electrolyte technique that allows spatially modulating charges with nanometer resolution. We employ a combination of a solid-polymer electrolyte gate and an ion-impenetrable e-beam-defined resist mask to locally create excess charges on top of the gated surface. Electrostatic simulations indicate high carrier density variations of $Delta n =10^{14}text{cm}^{-2}$ across a length of 10 nm at the mask boundaries on the surface of a 2D conductor, resulting in a sharp depletion region and a strong in-plane electric field of $6times10^8 text{Vm}^{-1}$ across the so-created junction. We apply this technique to the 2D material graphene to demonstrate the creation of tunable p-n junctions for optoelectronic applications. We also demonstrate the spatial versatility and self-aligned properties of this technique by introducing a novel graphene thermopile photodetector.

قيم البحث

اقرأ أيضاً

Strain engineering offers unique control to manipulate the electronic band structure of two-dimensional materials (2DMs) resulting in an effective and continuous tuning of the physical properties. Ad-hoc straining 2D materials has demonstrated novel devices including efficient photodetectors at telecommunication frequencies, enhanced-mobility transistors, and on-chip single photon source, for example. However, in order to gain insights into the underlying mechanism required to enhance the performance of the next-generation devices with strain(op)tronics, it is imperative to understand the nano- and microscopic properties as a function of a strong non-homogeneous strain. Here, we study the strain-induced variation of local conductivity of a few-layer transition-metal-dichalcogenide using a conductive atomic force microscopy. We report a novel strain characterization technique by capturing the electrical conductivity variations induced by local strain originating from surface topography at the nanoscale, which allows overcoming limitations of existing optical spectroscopy techniques. We show that the conductivity variations parallel the strain deviations across the geometry predicted by molecular dynamics simulation. These results substantiate a variation of the effective mass and surface charge density by .026 me/% and .03e/% of uniaxial strain, respectively. Furthermore, we show and quantify how a gradual reduction of the conduction band minima as a function of tensile strain explains the observed reduced effective Schottky barrier height. Such spatially-textured electronic behavior via surface topography induced strain variations in atomistic-layered materials at the nanoscale opens up new opportunities to control fundamental material properties and offers a myriad of design and functional device possibilities for electronics, nanophotonics, flextronics, or smart cloths.
Atomically thin rhenium disulphide (ReS2) is a member of the transition metal dichalcogenide (TMDC) family of materials characterized by weak interlayer coupling and a distorted 1T structure. Here, we report on the electrical transport study of mono- and multilayer ReS2 with polymer electrolyte gating. We find that the conductivity of monolayer ReS2 is completely suppressed at high carrier densities, an unusual feature unique to monolayers, making ReS2 the first example of such a material. While thicker flakes of ReS2 also exhibit a conductivity dome and an insulator-metal-insulator sequence, they do not show a complete conductivity suppression at high doping densities. Using dual-gated devices, we can distinguish the gate-induced doping from the electrostatic disorder induced by the polymer electrolyte itself. Theoretical calculations and a transport model indicate that the observed conductivity suppression can be explained by a combination of a narrow conduction band and Anderson localization due to electrolyte-induced disorder.
The recent discovery of ferromagnetism in 2D van der Waals (vdw) crystals has generated widespread interest, owing to their potential for fundamental and applied research. Advancing the understanding and applications of vdw magnets requires methods t o quantitatively probe their magnetic properties on the nanoscale. Here, we report the study of atomically thin crystals of the vdw magnet CrI$_3$ down to individual monolayers using scanning single-spin magnetometry, and demonstrate quantitative, nanoscale imaging of magnetisation, localised defects and magnetic domains. We determine the magnetisation of CrI$_3$ monolayers to be $approx16~mu_B/$nm$^2$ and find comparable values in samples with odd numbers of layers, whereas the magnetisation vanishes when the number of layers is even. We also establish that this inscrutable even-odd effect is intimately connected to the material structure, and that structural modifications can induce switching between ferro- and anti-ferromagnetic interlayer ordering. Besides revealing new aspects of magnetism in atomically thin CrI$_3$ crystals, these results demonstrate the power of single-spin scanning magnetometry for the study of magnetism in 2D vdw magnets.
We reveal new aspects of the interaction between plasmons and phonons in 2D materials that go beyond a mere shift and increase in plasmon width due to coupling to either intrinsic vibrational modes of the material or phonons in a supporting substrate . More precisely, we predict strong plasmon splitting due to this coupling, resulting in a characteristic avoided crossing scheme. We base our results on a computationally efficient approach consisting in including many-body interactions through the electron self-energy. We specify this formalism for a description of plasmons based upon a tight-binding electron Hamiltonian combined with the random-phase approximation. This approach is accurate provided vertex corrections can be neglected, as is is the case in conventional plasmon-supporting metals and Dirac-fermion systems. We illustrate our method by evaluating plasmonic spectra of doped graphene nanotriangles with varied size, where we predict remarkable peak splittings and other radical modifications in the spectra due to plasmons interactions with intrinsic optical phonons. Our method is equally applicable to other 2D materials and provides a simple approach for investigating coupling of plasmons to phonons, excitons, and other excitations in hybrid thin nanostructures.
Herein we discuss the fabrication of ballistic suspended graphene nanostructures supplemented with local gating. Using in-situ current annealing, we show that exceptional high mobilities can be obtained in these devices. A detailed description is giv en of the fabrication of bottom and different top-gate structures, which enable the realization of complex graphene structures. We have studied the basic building block, the p-n junction in detail, where a striking oscillating pattern was observed, which can be traced back to Fabry-Perot oscillations that are localized in the electronic cavities formed by the local gates. Finally we show some examples how the method can be extended to incorporate multi-terminal junctions or shaped graphene. The structures discussed here enable the access to electron-optics experiments in ballistic graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا