ﻻ يوجد ملخص باللغة العربية
We construct a state-sum type invariant of smooth closed oriented $4$-manifolds out of a $G$-crossed braided spherical fusion category ($G$-BSFC) for $G$ a finite group. The construction can be extended to obtain a $(3+1)$-dimensional topological quantum field theory (TQFT). The invariant of $4$-manifolds generalizes several known invariants in literature such as the Crane-Yetter invariant from a ribbon fusion category and Yetters invariant from homotopy $2$-types. If the $G$-BSFC is concentrated only at the sector indexed by the trivial group element, a cohomology class in $H^4(G,U(1))$ can be introduced to produce a different invariant, which reduces to the twisted Dijkgraaf-Witten theory in a special case. Although not proven, it is believed that our invariants are strictly different from other known invariants. It remains to be seen if the invariants are sensitive to smooth structures. It is expected that the most general input to the state-sum type construction of $(3+1)$-TQFTs is a spherical fusion $2$-category. We show that a $G$-BSFC corresponds to a monoidal $2$-category with certain extra structure, but that structure does not satisfy all the axioms of a spherical fusion $2$-category given by M. Mackaay. Thus the question of what axioms properly define a spherical fusion $2$-category is open.
We show that direct limit completions of vertex tensor categories inherit vertex and braided tensor category structures, under conditions that hold for example for all known Virasoro and affine Lie algebra tensor categories. A consequence is that the
The first author constructed a $q$-parameterized spherical category $sC$ over $mathbb{C}(q)$ in [Liu15], whose simple objects are labelled by all Young diagrams. In this paper, we compute closed-form expressions for the fusion rule of $sC$, using Lit
Let $Vsubseteq A$ be a conformal inclusion of vertex operator algebras and let $mathcal{C}$ be a category of grading-restricted generalized $V$-modules that admits the vertex algebraic braided tensor category structure of Huang-Lepowsky-Zhang. We giv
Let $mathcal{O}_c$ be the category of finite-length central-charge-$c$ modules for the Virasoro Lie algebra whose composition factors are irreducible quotients of reducible Verma modules. Recently, it has been shown that $mathcal{O}_c$ admits vertex
For every $infty$-category $mathscr{C}$, there is a homotopy $n$-category $mathrm{h}_n mathscr{C}$ and a canonical functor $gamma_n colon mathscr{C} to mathrm{h}_n mathscr{C}$. We study these higher homotopy categories, especially in connection with