ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric power as a probe of density of states in correlated actinide materials: the case of PuCoGa$_{5}$ superconductor

369   0   0.0 ( 0 )
 نشر من قبل Krzysztof Gofryk
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the thermoelectric power of the plutonium-based unconventional superconductor PuCoGa$_{5}$. The data is interpreted within a phenomenological model for the quasiparticle density of states of intermediate valence systems and the results are compared with results obtained from photoemission spectroscopy. The results are consistent with intermediate valence nature of 5$f$-electrons, furthermore, we propose that measurements of the Seebeck coefficient can be used as a probe of density of states in this material, thereby providing a link between transport measurements and photoemission in strongly correlated materials. We discuss these results and their implications for the electronic structure determination of other strongly correlated systems, especially actinide materials.

قيم البحث

اقرأ أيضاً

We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals , where signatures (e.g. phonons) are usually less than 1$%$ of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed across the junction leads to the conclusion that the point contact conductance is proportional to the {it effective density of states}, a physical quantity that can be computed if the electron self energy is known. The experimental data on iron based superconductors and heavy fermion compounds will be analyzed in this framework. These recent developments have extended the applicability of point contact spectroscopy to correlated materials, which will help us achieve a deeper understanding of the single electron dynamics in strongly correlated systems.
We have performed high-resolution powder x-ray diffraction measurements on a sample of $^{242}$PuCoGa$_{5}$, the heavy-fermion superconductor with the highest critical temperature $T_{c}$ = 18.7 K. The results show that the tetragonal symmetry of its crystallographic lattice is preserved down to 2 K. Marginal evidence is obtained for an anomalous behaviour below $T_{c}$ of the $a$ and $c$ lattice parameters. The observed thermal expansion is isotropic down to 150 K, and becomes anisotropic for lower temperatures. This gives a $c/a$ ratio that decreases with increasing temperature to become almost constant above $sim$150 K. The volume thermal expansion coefficient $alpha_{V}$ has a jump at $T_{c}$, a factor $sim$20 larger than the change predicted by the Ehrenfest relation for a second order phase transition. The volume expansion deviates from the curve expected for the conventional anharmonic behaviour described by a simple Gr{u}neisen-Einstein model. The observed differences are about ten times larger than the statistical error bars but are too small to be taken as an indication for the proximity of the system to a valence instability that is avoided by the superconducting state.
Actinide materials play a special role in condensed matter physics, spanning behaviours of itinerant d-electron and localized 4f-electron materials. An intermediate state, found notably in Pu-based materials whose 5f electrons are neither fully local ized nor itinerant, is particularly challenging to understand. Superconductivity appearing in some actinide materials provides clues to the nature of the 5f electrons. PuCoGa5, the first Pu-based superconductor, is superconducting at Tc=18.5 K. This relatively high Tc is unprecedented in any other actinide system but is typical of itinerant electron compounds in which superconductivity is mediated by phonons. Recent studies of PuCoGa5 show that its superconductivity is not phonon-mediated; rather, these experiments are consistent with superconductivity produced by antiferromagnetic fluctuations of nearly localized 5f electrons. Similarities of PuCoGa5 with the superconducting and normal states of isostructural 4f analogues CeMIn5 (M=Co, Rh, Ir) and high-Tc cuprates enable new perspectives on the 5f electrons of Pu.
Actinide elements produce a plethora of interesting physical behaviors due to the 5f states. This review compiles and analyzes progress in understanding of the electronic and magnetic structure of the 5f states in actinide metals. Particular interest is given to electron energy-loss spectroscopy and many-electron atomic spectral calculations, since there is now an appreciable library of core d -> valence f transitions for Th, U, Np, Pu, Am, and Cm. These results are interwoven and discussed against published experimental data, such as x-ray photoemission and absorption spectroscopy, transport measurements, and electron, x-ray, and neutron diffraction, as well as theoretical results, such as density-functional theory and dynamical mean-field theory.
The transferred hyperfine interaction between nuclear and electron spins in an heavy fermion material depends on the hybridization between the $f$-electron orbitals and those surrounding a distant nucleus. In CeMIn$_5$ (M=Rh, Ir, Co), both the hyperf ine coupling to the two indium sites as well as the crystalline electric field at the Ce are strongly dependent on the transition metal. We measure a series of CeRh$_{1-x}$Ir$_x$In$_5$ crystals and find that the hyperfine coupling reflects the orbital anisotropy of the ground state Ce 4$f$ wavefunction. These findings provide direct proof that the localized to itinerant transition is dominated by hybridization out of the Ce-In plane in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا