ترغب بنشر مسار تعليمي؟ اضغط هنا

JLab Measurements of the 3He Form Factors at Large Momentum Transfers

371   0   0.0 ( 0 )
 نشر من قبل Javier Gomez
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.

قيم البحث

اقرأ أيضاً

The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $le Q^2 le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facilit y of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.
We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1.16 GeV. These m easurements allow us to access the dominant pion-nucleon s-wave multipoles $E_{0+}$ and $S_{0+}$ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors $G_1^{pi^0 p}(Q^2)$ and $G_2^{pi^0 p}(Q^2)$. The data are compared to these generalized form factors and the results for $G_1^{pi^0 p}(Q^2)$ are found to be in good agreement with the LCSR predictions, but the level of agreement with $G_2^{pi^0 p}(Q^2)$ is poor.
Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the $Q^2 = 1-10~text{GeV}^2$ range using next-to-leading order light-cone sum rules.
The transverse electron scattering response function of 3He is studied in the quasi-elastic peak region for momentum transfers between 500 and 700 MeV/c. A conventional description of the process leads to results at a substantial variation with exper iment. To improve the results, the present calculation is done in a reference frame (the ANB or Active Nucleon Breit frame) which diminishes the influence of relativistic effects on nuclear states. The laboratory frame response function is then obtained via a kinematics transformation. In addition, a one-body nuclear current operator is employed that includes all leading order relativistic corrections. Multipoles of this operator are listed. It is shown that the use of the ANB frame leads to a sizable shift of the quasi-elastic peak to lower energy and, contrary to the relativistic current, also to an increase of the peak height. The additionally considered meson exchange current contribution is quite small in the peak region. In comparison with experiment one finds an excellent agreement of the peak positions. The peak height agrees well with experiment for the lowest considered momentum transfer (500 MeV/c), but tends to be too high for higher momentum transfer (10% at 700 MeV/c).
The transverse electron scattering response function of 3He was recently studied by us in the quasi-elastic peak region for momentum transfers q between 500 and 700 MeV/c. Those results, obtained using the Active Nucleon Breit frame (ANB), are here s upplemented by calculations in the laboratory, Breit and ANB frames using the two-fragment model discussed in our earlier work on the frame dependence of the the longitudinal response function R_L(q,omega). We find relatively frame independent results and good agreement with experiment especially for the lower momentum transfers. This agreement occurs when we neglect an omega-dependent piece of the one-body current relativistic correction. An inclusion of this term leads however to a rather pronounced frame dependence at q=700 MeV/c. A discussion of this term is given here. This report also includes a correction to our previous ANB results for R_T(q,omega).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا