ﻻ يوجد ملخص باللغة العربية
We conduct a 350 micron dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S_350 = 114-650 mJy and S/N > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust contents for a sample of 16 local DOGs that consists of 12 bump and 4 power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of warm dust component are 3-34$times10^{7} M_odot$ and 0.03-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason why DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.
Hot Dust-Obscured Galaxies (Hot DOGs) are among the most luminous galaxies in the Universe. Powered by highly obscured, possibly Compton-thick, active galactic nuclei (AGNs), Hot DOGs are characterized by SEDs that are very red in the mid-IR yet domi
Supernova (SN) rates serve as an important probe of star-formation models and initial mass functions. Near-infrared seeing-limited ground-based surveys typically discover a factor of 3-10 fewer SNe than predicted from far-infrared (FIR) luminosities
The coevolution of galaxies and their central supermassive black holes is a subject of intense research. A class of objects, the dust-obscured galaxies (DOGs) are particularly interesting in this respect as they are thought to represent a short evolu
We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg$^2$ of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-
Though half of cosmic starlight is absorbed by dust and reradiated at long wavelengths (3$mu$m-3mm), constraints on the infrared through millimeter galaxy luminosity function (the `IRLF) are poor in comparison to the rest-frame ultraviolet and optica