ﻻ يوجد ملخص باللغة العربية
Schlichting conjectured that the negative K-groups of small abelian categories vanish and proved this for noetherian abelian categories and for all abelian categories in degree $-1$. The main results of this paper are that $K_{-1}(E)$ vanishes when $E$ is a small stable $infty$-category with a bounded t-structure and that $K_{-n}(E)$ vanishes for all $ngeq 1$ when additionally the heart of $E$ is noetherian. It follows that Barwicks theorem of the heart holds for nonconnective K-theory spectra when the heart is noetherian. We give several applications, to non-existence results for bounded t-structures and stability conditions, to possible K-theoretic obstructions to the existence of the motivic t-structure, and to vanishing results for the negative K-groups of a large class of dg algebras and ring spectra.
We construct a model of differential K-theory, using the geometrically defined Chern forms, whose cocycles are certain equivalence classes of maps into the Grassmannians and unitary groups. In particular, we produce the circle-integration maps for th
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators,
A devissage--type theorem in algebraic $K$-theory is a statement that identifies the $K$-theory of a Waldhausen category $mathscr{C}$ in terms of the $K$-theories of a collection of Waldhausen subcategories of $mathscr{C}$ when a devissage condition
We study a categorical construction called the cobordism category, which associates to each Waldhausen category a simplicial category of cospans. We prove that this construction is homotopy equivalent to Waldhausens $S_{bullet}$-construction and ther