ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transport and dynamics in all-oxide perovskite La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrRuO$_3$ bilayers probed by ferromagnetic resonance

62   0   0.0 ( 0 )
 نشر من قبل Satoru Emori
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin films of perovskite oxides offer the possibility of combining emerging concepts of strongly correlated electron phenomena and spin current in magnetic devices. However, spin transport and magnetization dynamics in these complex oxide materials are not well understood. Here, we experimentally quantify spin transport parameters and magnetization damping in epitaxial perovskite ferromagnet/paramagnet bilayers of La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrRuO$_3$ (LSMO/SRO) by broadband ferromagnetic resonance spectroscopy. From the SRO thickness dependence of Gilbert damping, we estimate a short spin diffusion length of $lesssim$1 nm in SRO and an interfacial spin-mixing conductance comparable to other ferromagnet/paramagnetic-metal bilayers. Moreover, we find that anisotropic non-Gilbert damping due to two-magnon scattering also increases with the addition of SRO. Our results demonstrate LSMO/SRO as a spin-source/spin-sink system that may be a foundation for examining spin-current transport in various perovskite heterostructures.

قيم البحث

اقرأ أيضاً

With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$ _{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
We investigate the crystal structure in multiferroic tetragonal perovskite Sr$_{1/2}$Ba$_{1/2}$MnO$_3$ with high accuracy of the order of 10$^{-3}$ Angstrom for an atomic displacement. The large atomic displacement for Mn ion from the centerosymmetri c position, comparable with the off-centering distortion in the tetragonal ferroelectric BaTiO$_3$, is observed in the ferroelectric phase ($T_mathrm{N}$ $leq$ $T$ $leq$ $T_mathrm{C}$). In stark contrast, in the multiferroic phase ($T$ $leq$ $T_mathrm{N}$), the atomic displacement for Mn ion is suppressed, but those for O ions are enlarged. The atomic displacements in the polar crystal structures are also analyzed in terms of the ferroelectric modes. In the ferroelectric phase, the atomic displacements are decomposed into dominant positive Slater, negative Last, and small positive Axe modes. The suppression of Slater and Last modes, the sign change of Last mode, and the enlargement of Axe mode are found in the multiferroic phase. The ferroelectric distortion is well reproduced by a first-principles calculation based on Berry phase method, providing an additional information on competing mechanisms to induce the polarization, electronic $p$-$d$ hybridization vs. magnetic exchange-striction.
The many surface reconstructions of (110)-oriented lanthanum--strontium manganite (La$_{0.8}$Sr$_{0.2}$MnO$_3$, LSMO) were followed as a function of the oxygen chemical potential ($mu_text{O}$) and the surface cation composition. Decreasing $mu_text{ O}$ causes Mn to migrate across the surface, enforcing phase separation into A-site-rich areas and a variety of composition-related, structurally diverse B-site-rich reconstructions. The composition of these phase-separated structures was quantified with scanning tunneling microscopy (STM), and these results were used to build a 2D phase diagram of the LSMO(110) equilibrium surface structures.
With dc magnetisation and polarized neutron reflectometry we studied the ferromagnetic response of YBa$_2$Cu$_3$O$_7$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) multilayers that are grown with pulsed laser deposition. We found that whereas for certain g rowth conditions (denoted as A-type) the ferromagnetic moment of the LCMO layer is strongly dependent on the structural details of the YBCO layer on which it is deposited, for others (B-type) the ferromagnetism of LCMO is much more robust. Both kinds of multilayers are of similar structural quality, but electron energy-loss spectroscopy (EELS) studies with a scanning transmission electron microscope reveal an enhanced average Mn oxidation state of +3.5 for the A-type as opposed to the B-type samples for which it is close to the nominal value of +3.33. The related, additional hole doping of the A-type LCMO layers, which likely originates from La and/or Mn vacancies, can explain their fragile ferromagnetic order since it places them close to the boundary of the ferromagnetic order at which even weak perturbations can induce an antiferromagnetic or glassy state. On the other hand, we show that the B-type samples allow one to obtain YBCO/LCMO heterostructures with very thick YBCO layers and, yet, strongly ferromagnetic LCMO layers.
116 - F. Li 2018
The magnetic ordering of La$_{1/3}$Sr$_{2/3}$FeO$_3$ perovskite has been studied by neutron powder diffraction and $^{57}$Fe Mossbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to desc ribe the magnetic structure. Both are commensurate, with propagation vector k = (0,0,1) in R-3c space group. In the former model, the magnetic moments of Fe adopt the magnetic space group P3$_{2}$21 and have helical and antiferromagnetic ordering propagating along the c axis. The model allows only one Fe site, with a magnetic moment of 3.46(2) $mu_{rm{B}}$ at 2 K. In the latter model, the magnetic moments of iron ions adopt the magnetic space group C2/c or C2/c and are aligned collinearly. The model allows the presence of two inequivalent Fe sites with magnetic moments of amplitude 3.26(3) $mu_{rm{B}}$ and 3.67(2) $mu_{rm{B}}$, respectively. The neutron diffraction pattern is equally well fitted by either model. The Mossbauer spectroscopy study suggests a single charge state Fe$^{3.66+}$ above the magnetic transition and a charge disproportionation into Fe$^{(3.66-zeta)+}$ and Fe$^{(3.66+2zeta)+}$ below the magnetic transition. The compatibility of the magnetic structure models with the Mossbauer spectroscopy results is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا