ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Tarantula Treasury Project V. The star cluster Hodge 301: the old face of 30 Doradus

111   0   0.0 ( 0 )
 نشر من قبل Michele Cignoni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history (SFH) of Hodge~301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge~301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 supernovae Type-II exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of $approx 8800,pm 800$M$_{odot}$ and average reddening E(B$-$V) $approx 0.22-0.24$ mag, with a differential reddening $delta$E(B$-$V)$approx 0.04$ mag.



قيم البحث

اقرأ أيضاً

194 - M. Cignoni 2015
We present a study of the recent star formation of 30 Doradus in the Large Magellanic Cloud (LMC) using the panchromatic imaging survey Hubble Tarantula Treasury Project (HTTP). In this paper we focus on the stars within 20 pc of the center of the ma ssive ionizing cluster of 30 Doradus, NGC 2070. We recovered the star formation history by comparing deep optical and NIR color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PARSEC models, which include all stellar phases from pre-main sequence to post- main sequence. For the first time in this region we are able to measure the star formation using intermediate and low mass stars simultaneously. Our results suggest that NGC2070 experienced a prolonged activity. In particular, we find that the star formation in the region: i) exceeded the average LMC rate ~ 20 Myr ago; ii) accelerated dramatically ~ 7 Myr ago; and iii) reached a peak value 1-3 Myr ago. We did not find significant deviations from a Kroupa initial mass function down to 0.5 Msun. The average internal reddening E(B-V) is found to be between 0.3 and 0.4 mag.
We report on the study of interstellar extinction across the Tarantula nebula (30 Doradus), in the Large Magellanic Cloud, using observations from the Hubble Tarantula Treasury Project in the 0.3 - 1.6 micron range. The considerable and patchy extinc tion inside the nebula causes about 3500 red clump stars to be scattered along the reddening vector in the colour-magnitude diagrams, thereby allowing an accurate determination of the reddening slope in all bands. The measured slope of the reddening vector is remarkably steeper in all bands than in the the Galactic diffuse interstellar medium. At optical wavelengths, the larger ratio of total-to-selective extinction, namely Rv = 4.5 +/- 0.2, implies the presence of a grey component in the extinction law, due to a larger fraction of large grains. The extra large grains are most likely ices from supernova ejecta and will significantly alter the extinction properties of the region until they sublimate in 50 - 100 Myr. We discuss the implications of this extinction law for the Tarantula nebula and in general for regions of massive star formation in galaxies. Our results suggest that fluxes of strongly star forming regions are likely to be underestimated by a factor of about 2 in the optical.
The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric coverage of the entire star-burst region of 30 Doradus down to the half Solar mass limit. We use the deep stellar catalogue of HTTP to identify all the pre--main-s equence (PMS) stars of the region, i.e., stars that have not started their lives on the main-sequence yet. The photometric distinction of these stars from the more evolved populations is not a trivial task due to several factors that alter their colour-magnitude diagram positions. The identification of PMS stars requires, thus, sophisticated statistical methods. We employ Machine Learning Classification techniques on the HTTP survey of more than 800,000 sources to identify the PMS stellar content of the observed field. Our methodology consists of 1) carefully selecting the most probable low-mass PMS stellar population of the star-forming cluster NGC 2070, 2) using this sample to train classification algorithms to build a predictive model for PMS stars, and 3) applying this model in order to identify the most probable PMS content across the entire Tarantula Nebula. We employ Decision Tree, Random Forest and Support Vector Machine classifiers to categorise the stars as PMS and Non-PMS. The Random Forest and Support Vector Machine provided the most accurate models, predicting about 20,000 sources with a candidateship probability higher than 50 percent, and almost 10,000 PMS candidates with a probability higher than 95 percent. This is the richest and most accurate photometric catalogue of extragalactic PMS candidates across the extent of a whole star-forming complex.
We estimate physical parameters for the late-type massive stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud (LMC). The observational sample comprises 20 candidate red supergiants ( RSGs) which are the reddest (($B-V$) $>$ 1 mag) and brightest ($V$ $<$ 16 mag) objects in the VFTS. We use optical and near-IR photometry to estimate their temperatures and luminosities, and introduce the luminosity-age diagram to estimate their ages. We derive physical parameters for our targets, including temperatures from a new calibration of $(J-K_{rm s})_{0}$ colour for luminous cool stars in the LMC, luminosities from their $J$-band magnitudes (thence radii), and ages from comparisons with state-of-the-art evolutionary models. We show that interstellar extinction is a significant factor for our targets, highlighting the need to take it into account in analysis of the physical parameters of RSGs. We find that some of the candidate RSGs could be massive AGB stars. The apparent ages of the RSGs in the Hodge 301 and SL 639 clusters show a significant spread (12-24 Myr). We also apply our approach to the RSG population of the relatively nearby NGC 2100 cluster, finding a similarly large spread. We argue that the effects of mass-transfer in binaries may lead to more massive and luminous RSGs (which we call `red stragglers) than expected from single-star evolution, and that the true cluster ages correspond to the upper limit of the estimated RSG ages. In this way, the RSGs can serve as a new and potentially reliable age tracer in young star clusters. The corresponding analysis yields ages of 24$^{+5}_{-3}$ Myr for Hodge 301, 22$^{+6}_{-5}$ Myr for SL 639, and 23$^{+4}_{-2}$ Myr for NGC 2100.
Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations cle arly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا