ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE

71   0   0.0 ( 0 )
 نشر من قبل Pedro Simoni Pasquini
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we study the pattern of neutrino oscillations emerging from a previously proposed warped model construction incorporating $Delta(27)$ flavor symmetry. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of $theta_{13}$ makes these two parameters nearly proportional, leading to an approximate one-parameter description of neutrino oscillations. There is a sharp fourfold degenerate correlation between $delta_{CP}$ and the atmospheric mixing angle $theta_{23}$, so that maximal $theta_{23}$ also implies maximal leptonic CP violation. The predicted electron neutrino and anti-neutrino appearance probabilities indicate that the model should be tested at the T2K, NO$ u$A and DUNE long baseline oscillation experiments.



قيم البحث

اقرأ أيضاً

The results obtained by several experiments on atmospheric neutrino oscillations are summarized and discussed. Then the results obtained by different long baseline neutrino experiments are considered. Finally conclusions and perspectives are made.
133 - Mariana Frank 2014
We propose a scenario which accommodates all the masses and mixings of the SM fermions in a model of warped extra-dimensions with all matter fields in the bulk. In this scenario, the same flavor symmetric structure is imposed on all the fermions of t he Standard Model (SM), including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of the symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons) and wash-out the obvious effects of the symmetry. With the Higgs field leaking into the bulk, and Dirac neutrinos sufficiently localized towards the UV boundary, the neutrino mass hierarchy and flavor structure will still be largely dominated by the fundamental flavor structure. The neutrino sector would then reflect the fundamental flavor structure, whereas the quark sector would probe the effects of the flavor symmetry breaking sector. As an example, we explore these features in the context of a family permutation symmetry imposed in both quark and lepton sectors.
The relatively large measured value of $theta_{13}$ has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator-based experiments only NOvA has a long enough baseline to obser ve earth matter effects. However, NOvA is plagued with uncertainty on the knowledge of the true value of $delta_{CP}$, and this could drastically reduce its sensitivity to the neutrino mass hierarchy. The earth matter effect on atmospheric neutrinos on the other hand is almost independent of $delta_{CP}$. The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL@INO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL@INO and folded with the detector resolutions and efficiencies obtained by the INO collaboration from a full Geant4-based detector simulation. The data from ICAL@INO is then combined with simulated data from T2K, NOvA, Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy is performed. With 10 years of ICAL@INO data combined with T2K, NOvA and reactor data, one could get about $2.3sigma-5.7sigma$ discovery of the neutrino mass hierarchy, depending on the true value of $sin^2theta_{23}$ [0.4 -- 0.6], $sin^22theta_{13}$ [0.08 -- 0.12] and $delta_{CP}$ [0 -- 2$pi$].
Future neutrino-oscillation experiments are expected to bring definite answers to the questions of neutrino-mass hierarchy and violation of charge-parity symmetry in the lepton sector. To realize this ambitious program it is necessary to ensure a sig nificant reduction of uncertainties, particularly those related to neutrino-energy reconstruction. In this paper, we discuss different sources of systematic uncertainties, paying special attention to those arising from nuclear effects and detector response. By analyzing nuclear effects we show the importance of developing accurate theoretical models, capable to provide quantitative description of neutrino cross sections, together with the relevance of their implementation in Monte Carlo generators and extensive testing against lepton-scattering data. We also point out the fundamental role of efforts aiming to determine detector responses in test-beam exposures.
Non-unitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino mass models. In these models, light neutrino mixing is described by a sub-matrix of the full lepton mixing matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by additional parameters, including new sources of CP violation. Here we perform a combined analysis of short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a significant deviation from unitary mixing, and the complementary data sets have been used to constrain the non-unitarity parameters. We have also found that the T2K and NOvA tension in the determination of the Dirac CP-phase is not alleviated in the context of non-unitary neutrino mixing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا