ﻻ يوجد ملخص باللغة العربية
In 1917, Hardy and Ramanujan obtained the asymptotic formula for the classical partition function $p(n)$. The classical partition function $p(n)$ has been extensively studied. Recently, Luca and Ralaivaosaona obtained the asymptotic formula for the square-root function. Many mathematicians have paid much attention to congruences on some special colored partition functions. In this paper, we investigate the general colored partition functions. Given positive integers $1=s_1<s_2<dots <s_k$ and $ell_1, ell_2,dots , ell_k$. Let $g(mathbf{s}, mathbf{l}, n)$ be the number of $ell$-colored partitions of $n$ with $ell_i$ of the colors appearing only in multiplies of $s_i (1le ile k)$, where $ell = ell_1+cdots +ell_k$. By using the elementary method we obtain an asymptotic formula for the partition function $g(mathbf{s}, mathbf{l}, n)$ with an explicit error term.
In earlier work generalizing a 1977 theorem of Alladi, the authors proved a partition-theoretic formula to compute arithmetic densities of certain subsets of the positive integers $mathbb N$ as limiting values of $q$-series as $qto zeta$ a root of un
Motivated by a partition inequality of Bessenrodt and Ono, we obtain analogous inequalities for $k$-colored partition functions $p_{-k}(n)$ for all $kgeq2$. This enables us to extend the $k$-colored partition function multiplicatively to a function o
We examine partition zeta functions analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties -- those summed over
We present some applications of the Kudla-Millson and the Millson theta lift. The two lifts map weakly holomorphic modular functions to vector valued harmonic Maass forms of weight $3/2$ and $1/2$, respectively. We give finite algebraic formulas for
We consider very general random integers and (attempt to) prove that many multiplicative and additive functions of such integers have limiting distributions. These integers include, for instance, the curvatures of Apollonian circle packings, trace of