ترغب بنشر مسار تعليمي؟ اضغط هنا

On uniform flag bundles on Fano manifolds

119   0   0.0 ( 0 )
 نشر من قبل Luis Eduardo Sola Conde
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As a natural extension of the theory of uniform vector bundles on Fano manifolds, we consider uniform principal bundles, and study them by means of the associated flag bundles, as their natural projective geometric realizations. In this paper we develop the necessary background, and prove some theorems that are flag bundle counterparts of some of the central results in the theory of uniform vector bundles.

قيم البحث

اقرأ أيضاً

In this paper we give a splitting criterion for uniform vector bundles on Fano manifolds covered by lines. As a consequence, we classify low rank uniform vector bundles on Hermitian symmetric spaces and Fano bundles of rank two on Grassmannians.
We present here some conjectures on the diagonalizability of uniform principal bundles on rational homogeneous spaces, that are natural extensions of classical theorems on uniform vector bundles on the projective space, and study the validity of these conjectures in the case of classical groups.
368 - Rong Du , Xinyi Fang , Yun Gao 2019
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a lgebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
Instanton bundles on $mathbb{P}^3$ have been at the core of the research in Algebraic Geometry during the last thirty years. Motivated by the recent extension of their definition to other Fano threefolds of Picard number one, we develop the theory of instanton bundles on the complete flag variety $F:=F(0,1,2)$ of point-lines on $mathbb{P}^2$. After giving for them two different monadic presentations, we use it to show that the moduli space $MI_F(k)$ of instanton bundles of charge $k$ is a geometric GIT quotient and the open subspace $MI^s_F(k)subset MI_F(k)$ of stable instanton bundles has a generically smooth component of dim $8k-3$. Finally we study their locus of jumping conics.
Geometric structures on manifolds became popular when Thurston used them in his work on the geometrization conjecture. They were studied by many people and they play an important role in higher Teichmuller theory. Geometric structures on a manifold a re closely related with representations of the fundamental group and with flat bundles. Higgs bundles can be very useful in describing flat bundles explicitly, via solutions of Hitchins equations. Baraglia has shown in his Ph.D. Thesis that Higgs bundles can also be used to construct geometric structures in some interesting cases. In this paper, we will explain the main ideas behind this theory and we will survey some recent results in this direction, which are joint work with Qiongling Li.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا