ترغب بنشر مسار تعليمي؟ اضغط هنا

MBE-grown 232-270 nm Deep-UV LEDs using Monolayer thin Binary GaN/AlN quantum heterostructures

177   0   0.0 ( 0 )
 نشر من قبل S M Islam
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrically injected deep ultra-violet (UV) emission is obtained using monolayer (ML) thin GaN/AlN quantum structures as active regions. The emission wavelength is tuned by controlling the thickness of ultrathin GaN layers with monolayer precision using plasma assisted molecular beam epitaxy (PAMBE). Single peaked emission spectra is achieved with narrow full width at half maximum (FWHM) for three different light emitting diodes (LEDs) operating at 232 nm, 246 nm and 270 nm. 232 nm (5.34 eV) is the shortest EL emission wavelength reported so far using GaN as the light emitting material and employing polarization-induced doping.

قيم البحث

اقرأ أيضاً

Deep ultraviolet (UV) optical emission below 250 nm (~5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (~5.7 to 5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These MBE-grown extreme quantum-confinement GaN/AlN heterostructures exhibit internal quantum efficiency as high as 40% at wavelengths as short as 219 nm. These observations, together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such new binary quantum disk active regions offers unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
The lattice mismatch between AlGaN and AlN substrates limits the design and efficiency of UV LEDs, but it can be mitigated by the co-incorporation of boron. We employ hybrid density functional theory to investigate the thermodynamic, structural, and electronic properties of BAlGaN alloys. We show that BAlGaN can lattice match AlN with band gaps that match AlGaN of the same gallium content. We predict that BAlGaN emits transverse-electric polarized for gallium content of ~45% or more. Our results indicate that BAlGaN alloys are promising materials for higher efficiency UV optoelectronic devices on bulk AlN substrates.
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters, and for power electronics.
The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
We study theoretically the electronic properties of $c$-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we c alculate the optical interband transitions of the QDs and their polarization properties. We show that an anisotropy of the QD confinement potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to a pronounced linear polarization of the ground state and excited state transitions. An externally applied uniaxial stress can be used to either induce a linear polarization of the ground-state transition for emission of single polarized photons or even to compensate the polarization induced by the structural elongation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا