ترغب بنشر مسار تعليمي؟ اضغط هنا

Capturing relativistic wake eld structures in plasmas using ultrashort high-energy electrons as a probe

160   0   0.0 ( 0 )
 نشر من قبل Chaojie Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the applications of this new method.


قيم البحث

اقرأ أيضاً

203 - M. Mori , M. Kando , I. Daito 2006
The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulatio ns of laser-wakefield generation in the self-modulation regime.
We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ J. Dawsons plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunc h limit. We use these results to determine the on-set of the ion dynamics, and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.
Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well-separated from relativistic-quantum scales. As a toy model, we study scalar QED, whi ch describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a 1D plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave fro m the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.
Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has b een extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort relativistic electron beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا