ﻻ يوجد ملخص باللغة العربية
The most simple superrenormalizable model of quantum gravity is based on the general local covariant six-derivative action. In addition to graviton such a theory has massive scalar and tensor modes. It was shown recently that in the case when the massive poles emerge in complex conjugate pairs, the theory has also unitary $S$-matrix and hence can be seen as a candidate to be a consistent quantum gravity theory. In the present work we construct the modified Newton potential and explore the gravitational light bending in a general six-derivative theory, including the most interesting case of complex massive poles. In the case of the light deflection the results are obtained within classical and semiclassical approaches.
Local gravitational theories with more than four derivatives have remarkable quantum properties, e.g., they are super-renormalizable and may be unitary in the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these theories a
We present the most general quadratic curvature action with torsion including infinite covariant derivatives and study its implications around the Minkowski background via the Palatini approach. Provided the torsion is solely given by the background
We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian potential near the origin is improved respect
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca