ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-Temporal Attention Models for Grounded Video Captioning

111   0   0.0 ( 0 )
 نشر من قبل Mihai Zanfir
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that relies on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video data to high level textual description, bypassing localization and recognition, thus discarding potentially valuable information for content localization and generalization. In this work we present an automatic video captioning model that combines spatio-temporal attention and image classification by means of deep neural network structures based on long short-term memory. The resulting system is demonstrated to produce state-of-the-art results in the standard YouTube captioning benchmark while also offering the advantage of localizing the visual concepts (subjects, verbs, objects), with no grounding supervision, over space and time.



قيم البحث

اقرأ أيضاً

Generating video descriptions automatically is a challenging task that involves a complex interplay between spatio-temporal visual features and language models. Given that videos consist of spatial (frame-level) features and their temporal evolutions , an effective captioning model should be able to attend to these different cues selectively. To this end, we propose a Spatio-Temporal and Temporo-Spatial (STaTS) attention model which, conditioned on the language state, hierarchically combines spatial and temporal attention to videos in two different orders: (i) a spatio-temporal (ST) sub-model, which first attends to regions that have temporal evolution, then temporally pools the features from these regions; and (ii) a temporo-spatial (TS) sub-model, which first decides a single frame to attend to, then applies spatial attention within that frame. We propose a novel LSTM-based temporal ranking function, which we call ranked attention, for the ST model to capture action dynamics. Our entire framework is trained end-to-end. We provide experiments on two benchmark datasets: MSVD and MSR-VTT. Our results demonstrate the synergy between the ST and TS modules, outperforming recent state-of-the-art methods.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, the y often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over mu ltiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we propose Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.
418 - Lili Meng , Bo Zhao , Bo Chang 2018
Inspired by the observation that humans are able to process videos efficiently by only paying attention where and when it is needed, we propose an interpretable and easy plug-in spatial-temporal attention mechanism for video action recognition. For s patial attention, we learn a saliency mask to allow the model to focus on the most salient parts of the feature maps. For temporal attention, we employ a convolutional LSTM based attention mechanism to identify the most relevant frames from an input video. Further, we propose a set of regularizers to ensure that our attention mechanism attends to coherent regions in space and time. Our model not only improves video action recognition accuracy, but also localizes discriminative regions both spatially and temporally, despite being trained in a weakly-supervised manner with only classification labels (no bounding box labels or time frame temporal labels). We evaluate our approach on several public video action recognition datasets with ablation studies. Furthermore, we quantitatively and qualitatively evaluate our models ability to localize discriminative regions spatially and critical frames temporally. Experimental results demonstrate the efficacy of our approach, showing superior or comparable accuracy with the state-of-the-art methods while increasing model interpretability.
We study the problem of weakly supervised grounded image captioning. That is, given an image, the goal is to automatically generate a sentence describing the context of the image with each noun word grounded to the corresponding region in the image. This task is challenging due to the lack of explicit fine-grained region word alignments as supervision. Previous weakly supervised methods mainly explore various kinds of regularization schemes to improve attention accuracy. However, their performances are still far from the fully supervised ones. One main issue that has been ignored is that the attention for generating visually groundable words may only focus on the most discriminate parts and can not cover the whole object. To this end, we propose a simple yet effective method to alleviate the issue, termed as partial grounding problem in our paper. Specifically, we design a distributed attention mechanism to enforce the network to aggregate information from multiple spatially different regions with consistent semantics while generating the words. Therefore, the union of the focused region proposals should form a visual region that encloses the object of interest completely. Extensive experiments have demonstrated the superiority of our proposed method compared with the state-of-the-arts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا