ﻻ يوجد ملخص باللغة العربية
A horizontal flow of two immiscible fluid layers with different densities, viscosities and thicknesses, subject to vertical gravitational forces and with an insoluble surfactant present at the interface, is investigated. The base Couette flow is driven by the horizontal motion of the channel walls. Linear and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave instability are studied using the lubrication approximation, which leads to a system of coupled nonlinear evolution equations for the interface and surfactant disturbances. The linear stability is determined by an eigenvalue problem for the normal modes. The growth rates and the amplitudes of disturbances of the interface, surfactant, velocities, and pressures are found analytically. For each wavenumber, there are two active normal modes. For each mode, the instability threshold conditions in terms of the system parameters are determined. In particular, it transpires that for certain parametric ranges, even arbitrarily strong gravity cannot completely stabilize the flow. The correlations of vorticity-thickness phase differences with instability, present when the gravitational effects are neglected, are found to break down when gravity is important. The physical mechanisms of instability for the two modes are explained with vorticity playing no role in them. Unlike the semi-infinite case that we previously studied, a small-amplitude nonlinear saturation of the surfactant instability is possible in the absence of gravity. For certain parametric ranges, the interface deflection is governed by a decoupled Kuramoto-Sivashinsky equation, which provides a source term for a linear convection-diffusion equation governing the surfactant concentration. The full numerics confirm the prediction that, along with the interface, the surfactant wave is chaotic, but the ratio of the two chaotic waves is constant.
A linear stability analysis of a two-layer plane Couette flow of two immiscible fluid layers with different densities, viscosities and thicknesses, bounded by two infinite parallel plates moving at a constant relative velocity to each other, with an
Nonlinear stages of the recently uncovered instability due to insoluble surfactant at the interface between two fluids are investigated for the case of a creeping plane Couette flow with one of the fluids a thin film and the other one a much thicker
We consider an approach to the analysis of nonstationary processes based on the application of wavelet basis sets constructed using segments of the analyzed time series. The proposed method is applied to the analysis of time series generated by a nonlinear system with and without noise
Toroidal magnetic fields subject to the Tayler instability can transport angular momentum. We show that the Maxwell and Reynolds stress of the nonaxisymmetric field pattern depend linearly on the shear in the cylindrical gap geometry. Resulting angul
Inter-layer synchronization is a dynamical state occurring in multi-layer networks composed of identical nodes. The state corresponds to have all layers synchronized, with nodes in each layer which do not necessarily evolve in unison. So far, the stu