ﻻ يوجد ملخص باللغة العربية
Chained correlation inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed based on the positivity of a sequence of moment matrices. When a jointly measurable set of fuzzy POVMs is employed in first measurement of every pair of sequential measurements, the chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We identify that incompatibility of measurements is only necessary, but not sufficient, in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit observables and the optimal violation of a non-local steering inequality, proposed by Jones and Wiseman (Phys. Rev. A, 84, 012110 (2011)). To this end, we construct a local analogue of this steering inequality in a single qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.
We show how to construct loss-tolerant linear steering inequalities using a generic set of von Neumann measurements that are violated by $d$-dimensional states, and that rely only upon a simple property of the set of measurements used (the maximal ov
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
This talk is a survey of the question of joint measurability of coexistent observables and its is based on the monograph Operational Quantum Physics [1] and on the papers [2,3,4].
Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. N
Quantum measurements can be interpreted as a generalisation of probability vectors, in which non-negative real numbers are replaced by positive semi-definite operators. We extrapolate this analogy to define a generalisation of doubly stochastic matri