ﻻ يوجد ملخص باللغة العربية
Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Ba~{n}uls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors for different initial quantum states. One particular case called weak thermalization regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a $t^{-3/2}$ decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.
We study the dynamics of a quantum Ising chain after the sudden introduction of a non-integrable long-range interaction. Via an exact mapping onto a fully-connected lattice of hard-core bosons, we show that a pre-thermal state emerges and we investig
We consider a quantum quench in a finite system of length $L$ described by a 1+1-dimensional CFT, of central charge $c$, from a state with finite energy density corresponding to an inverse temperature $betall L$. For times $t$ such that $ell/2<t<(L-e
We numerically construct translationally invariant quasi-conserved operators with maximum range M which best-commute with a non-integrable quantum spin chain Hamiltonian, up to M = 12. In the large coupling limit, we find that the residual norm of th
Generalised hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symm
Recently, a non-trivial relation between the quasi-particle spectrum and entanglement entropy production was discovered in non-integrable quenches in the paramagnetic Ising quantum spin chain. Here we study the dynamics of analogous quenches in the q