ﻻ يوجد ملخص باللغة العربية
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two dimensional toric code with phase-flip errors.
Quantum LDPC codes are a promising direction for low overhead quantum computing. In this paper, we propose a generalization of the Union-Find decoder as adecoder for quantum LDPC codes. We prove that this decoder corrects all errors with weight up to
Topological quantum error-correcting codes are a promising candidate for building fault-tolerant quantum computers. Decoding topological codes optimally, however, is known to be a computationally hard problem. Various decoders have been proposed that
Linear Programming (LP) is an important decoding technique for binary linear codes. However, the advantages of LP decoding, such as low error floor and strong theoretical guarantee, etc., come at the cost of high computational complexity and poor per
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wavefunction ansatz, the proposed algorithm can be efficiently implemented i
We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford unitaries and local Pauli measurements in one dimension. Building upon 1) a general formula relating the error-susceptibility of a subregion t