ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-energy electronic recoil in xenon detectors by solar neutrinos

392   0   0.0 ( 0 )
 نشر من قبل Chih-Pan Wu
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalization for xenon detectors, and discuss its implication for low energy solar neutrino detection (as the signal) and WIMP search (as a source of background).

قيم البحث

اقرأ أيضاً

The search for dark matter, the missing mass of the Universe, is one of the most active fields of study within particle physics. The XENON1T experiment recently observed a 3.5$sigma$ excess potentially consistent with dark matter, or with solar axion s. Here, we will use the Noble Element Simulation Technique (NEST) software to simulate the XENON1T detector, reproducing the excess. We utilize different detector efficiency and energy reconstruction models, but they primarily impact sub-keV energies and cannot explain the XENON1T excess. However, using NEST, we can reproduce their excess in multiple, unique ways, most easily via the addition of 31$pm$11 $^{37}Ar$ decays. Furthermore, this results in new, modified background models, reducing the significance of the excess to $le2.2sigma$ at least using non-Profile Likelihood Ratio (PLR) methods. This is independent confirmation that the excess is a real effect, but potentially explicable by known physics. Many cross-checks of our $^{37}Ar$ hypothesis are presented.
BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiments goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.
Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (Wea kly Interacting Massive Particles or WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the applications of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.
Next-generation xenon detectors with multi-ton-year exposure are powerful direct probes of dark matter candidates, in particular the favorite weakly-interacting massive particles. Coupled with the features of low thresholds and backgrounds, they are also excellent telescopes of solar neutrinos. In this paper, we study the discovery potential of ton-scale xenon detectors in electromagnetic moments of solar neutrinos. Relevant neutrino-atom scattering processes are calculated by applying a state-of-the-arts atomic many-body method--relativistic random phase approximation (RRPA). Limits on these moments are derived from existing data and estimated with future experiment specifications. With one ton-year exposure, XENON-1T can improve the effective milli-charge constraint by a factor two. With LZ and DARWIN, the projected improvement on the solar neutrino effective milli-charge(magnetic moment) is around 7(2) times smaller than the current bound. If LZ can keep the same background level and push the electron recoil threshold to 0.5 keV, the projected improvement on milli-charge(magnetic moment) is about 10(3) times smaller than the current bound.
Allowed charged $pi$ meson decays are characterized by simple dynamics, few available decay channels, mainly into leptons, and extremely well controlled radiative and loop corrections. In that sense, pion decays represent a veritable triumph of the s tandard model (SM) of elementary particles and interactions. This relative theoretical simplicity makes charged pion decays a sensitive means for testing the underlying symmetries and the universality of weak fermion couplings, as well as for studying pion structure and chiral dynamics. Even after considerable recent improvements, experimental precision is lagging far behind that of the theoretical description for pion decays. We review the current state of experimental study of the pion electronic decay $pi^+ to e^+ u_e(gamma)$, or $pi_{e2(gamma)}$, where the $(gamma)$ indicates inclusion and explicit treatment of radiative decay events. We briefly review the limits on non-SM processes arising from the present level of experimental precision in $pi_{e2(gamma)}$ decays. Focusing on the PEN experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the prospects for further improvement in the near term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا