ﻻ يوجد ملخص باللغة العربية
Training deep Convolutional Neural Networks (CNN) is a time consuming task that may take weeks to complete. In this article we propose a novel, theoretically founded method for reducing CNN training time without incurring any loss in accuracy. The basic idea is to begin training with a pre-train network using lower-resolution kernels and input images, and then refine the results at the full resolution by exploiting the spatial scaling property of convolutions. We apply our method to the ImageNet winner OverFeat and to the more recent ResNet architecture and show a reduction in training time of nearly 20% while test set accuracy is preserved in both cases.
An important goal in visual recognition is to devise image representations that are invariant to particular transformations. In this paper, we address this goal with a new type of convolutional neural network (CNN) whose invariance is encoded by a re
To train deep convolutional neural networks, the input data and the intermediate activations need to be kept in memory to calculate the gradient descent step. Given the limited memory available in the current generation accelerator cards, this limits
The model parameters of convolutional neural networks (CNNs) are determined by backpropagation (BP). In this work, we propose an interpretable feedforward (FF) design without any BP as a reference. The FF design adopts a data-centric approach. It der
Convolutional neural networks (CNNs) have been successfully used in a range of tasks. However, CNNs are often viewed as black-box and lack of interpretability. One main reason is due to the filter-class entanglement -- an intricate many-to-many corre
Training Convolutional Neural Networks (CNNs) usually requires a large number of computational resources. In this paper, textit{SparseTrain} is proposed to accelerate CNN training by fully exploiting the sparsity. It mainly involves three levels of i