ﻻ يوجد ملخص باللغة العربية
Consider a population of individuals belonging to an infinity number of types, and assume that type proportions follow the two-parameter Poisson-Dirichlet distribution. A sample of size n is selected from the population. The total number of different types and the number of types appearing in the sample with a fixed frequency are important statistics. In this paper we establish the moderate deviation principles for these quantities. The corresponding rate functions are explicitly identified, which help revealing a critical scale and understanding the exact role of the parameters. Conditional, or posterior, counterparts of moderate deviation principles are also established.
Gibbs-type random probability measures and the exchangeable random partitions they induce represent an important framework both from a theoretical and applied point of view. In the present paper, motivated by species sampling problems, we investigate
Let $M_{l,n}$ be the number of blocks with frequency $l$ in the exchangeable random partition induced by a sample of size $n$ from the Ewens-Pitman sampling model. We show that, as $n$ tends to infinity, $n^{-1}M_{l,n}$ satisfies a large deviation pr
Suppose $Pi$ is an exchangeable random partition of the positive integers and $Pi_n$ is its restriction to ${1, ..., n}$. Let $K_n$ denote the number of blocks of $Pi_n$, and let $K_{n,r}$ denote the number of blocks of $Pi_n$ containing $r$ integers
Consider the state space model (X_t,Y_t), where (X_t) is a Markov chain, and (Y_t) are the observations. In order to solve the so-called filtering problem, one has to compute L(X_t|Y_1,...,Y_t), the law of X_t given the observations (Y_1,...,Y_t). Th
We obtain sharp upper and lower bounds for the moderate deviations of the volume of the range of a random walk in dimension five and larger. Our results encompass two regimes: a Gaussian regime for small deviations, and a stretched exponential regime