ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant compactifications of a nilpotent group by $G/P$

132   0   0.0 ( 0 )
 نشر من قبل Daewoong Cheong
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Daewoong Cheong




اسأل ChatGPT حول البحث

Let $G$ be a simple complex algebraic group, $P$ a parabolic subgroup of $G$ and $N$ the unipotent radical of $P.$ The so-called equivariant compactification of $N$ by $G/P$ is given by an action of $N$ on $G/P$ with a dense open orbit isomorphic to $N$. In this article, we investigate how many such equivariant compactifications there exist. Our result says that there is a unique equivariant compactification of $N$ by $G/P$, up to isomorphism, except $P^n$.



قيم البحث

اقرأ أيضاً

We show a Z^2-filtered algebraic structure and a quantum to classical principle on the torus-equivariant quantum cohomology of a complete flag variety of general Lie type, generalizing earlier works of Leung and the second author. We also provide var ious applications on equivariant quantum Schubert calculus, including an equivariant quantum Pieri rule for any partial flag variety of Lie type A.
206 - Baohua Fu , Jun-Muk Hwang 2013
Let X be an $n$-dimensional Fano manifold of Picard number 1. We study how many different ways X can compactify the complex vector group C^n equivariantly. Hassett and Tschinkel showed that when X = P^n with n geq 2, there are many distinct ways that X can be realized as equivariant compactifications of C^n. Our result says that projective space is an exception: among Fano manifolds of Picard number 1 with smooth VMRT, projective space is the only one compactifying C^n equivariantly in more than one ways. This answers questions raised by Hassett-Tschinkel and Arzhantsev-Sharoyko.
135 - Baohua Fu , Pedro Montero 2018
In this note, we classify smooth equivariant compactifications of $mathbb{G}_a^n$ which are Fano manifolds with index $geq n-2$.
91 - Johan Martens 2017
We give a summary of joint work with Michael Thaddeus that realizes toroidal compactifcations of split reductive groups as moduli spaces of framed bundles on chains of rational curves. We include an extension of this work that covers Artin stacks wit h good moduli spaces. We discuss, for complex groups, the symplectic counterpart of these compactifications, and conclude with some open problems about the moduli problem concerned.
156 - Baohua Fu , Qifeng Li 2020
For a complex connected semisimple linear algebraic group G of adjoint type and of rank n, De Concini and Procesi constructed its wonderful compactification bar{G}, which is a smooth Fano G times G-variety of Picard number n enjoying many interesting properties. In this paper, it is shown that the wonderful compactification bar{G} is rigid under Fano deformations. Namely, for any family of smooth Fano varieties over a connected base, if one fiber is isomorphic to bar{G}, then so are all other fibers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا