ﻻ يوجد ملخص باللغة العربية
Supernova 1978K is one of the oldest-known examples of the class of Type IIn supernovae that show evidence for strong interaction between the blast wave and a dense, pre-existing circumstellar medium. Here we report detections of SN 1978K at both 34 GHz and 94 GHz, making it only the third extragalactic supernova (after SN 1987A and SN 1996cr) to be detected at late-times at these frequencies. We find SN 1978K to be >400 times more luminous than SN 1987A at millimetre wavelengths in spite of the roughly nine year difference in ages, highlighting the risk in adopting SN 1987A as a template for the evolution of core-collapse supernovae in general. Additionally, from new VLBI observations at 8.4 GHz, we measure a deconvolved diameter for SN 1978K of ~5 milli-arcsec, and a corresponding average expansion velocity of <1500 km/s. These observations provide independent evidence of an extremely dense circumstellar medium surrounding the progenitor star.
Detecting and studying pulsars above a few GHz in the radio band is challenging due to the typical faintness of pulsar radio emission, their steep spectra, and the lack of observatories with sufficient sensitivity operating at high frequency ranges.
We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = $-$19.95 $pm$ 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Typ
We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absol
The isotopes $^{60}$Fe and $^{26}$Al originate from massive stars and their supernovae, reflecting ongoing nucleosynthesis in the Galaxy. We studied the gamma-ray emission from these isotopes at characteristic energies 1173, 1332, and 1809 keV with o
Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a normal spiral galaxy (NGC 3191) in terms of stellar mass