ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on neutrino masses from the study of the nearby large-scale structure and galaxy cluster counts

76   0   0.0 ( 0 )
 نشر من قبل Hans Boehringer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, Omega_m, and the density fluctuation amplitude, sigma_8. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure LambdaCDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.



قيم البحث

اقرأ أيضاً

The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmolog ical parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
63 - L. Guzzo 2002
I review the status of large-scale structure studies based on redshift surveys of galaxies and clusters of galaxies. In particular, I compare recent results on the power spectrum and two-point correlation correlation function from the 2dF and REFLEX surveys, highlighting the advantage of X-ray clusters in the comparison to cosmological models, given their easy-to-understand mass selection function. Unlike for galaxies, this allows the overall normalization of the power spectrum to be measured directly from the data, providing an extra constraint on the models. In the context of CDM models, both the shape and amplitude of the REFLEX P(k) require, consistently, a low value for the mean matter density $Omega_M$. This shape is virtually indistinguishable from that of the galaxy power spectrum measured by the 2dF survey, simply multiplied by a constant cluster-galaxy bias factor. This consistency is remarkable for data sets which use different tracers and are very different in terms of selection function and observational biases. Similarly, the knowledge of the power spectrum normalization yields naturally a value $bsimeq 1$ for the bias parameter of $b_J$-selected (as in 2dF) galaxies, also in agreement with independent estimates using higher-order clustering and CMB data. In the final part, I briefly describe the measurements of the matter density parameter from redshift space distortions in galaxy surveys, and show evidence for similar streaming motions of clusters in the REFLEX redshift-space correlation function $xi(r_p,pi)$. With no exception, this wealth of independent clustering measurements point in a remarkably consistent way towards a low-density CDM Universe with $Omega_Msimeq 0.3$.
We revisit a cosmological constraint on dark matter decaying into dark radiation at late times. In Enqvist et al. (2015), we mainly focused on the effects of decaying dark matter (DDM) on the cosmic microwave background (CMB) and nonlinear matter pow er spectrum. Extending our previous analysis, here we use N-body simulation to investigate how DDM affects the halo mass function. This allows us to incorporate the cluster counts observed by the Sunyaev-Zeldovich effect to study a bound on the lifetime of DDM. We also update the data of CMB and cosmic shear power spectrum with the Planck 2015 results and KiDS450 observations, respectively. From these cosmological observations, we obtain an lower bound on the lifetime $Gamma^{-1}ge 175,$Gyr from the Planck2015 results (CMB+SZ cluster count) combined with the KiDS450 and the recent measurements of the baryon acoustic scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا