ﻻ يوجد ملخص باللغة العربية
We consider the Edwards-Anderson Ising Spin Glass model for non negative temperatures T: We define the natural notion of Boltzmann- Gibbs measure for the Edwards-Anderson spin glass at a given temperature, and of unsatisfied edges. We prove that for low enough temperatures, in almost every spin configuration the graph formed by the unsatisfied edges is made of finite connected components. In other words, the unsatisfied edges do not percolate.
We carried out AC magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ~1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground stat
Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar Ising model. We consider systems of dipoles randomly placed on a fraction x of all L^3 sites of a simple cubic lattice that point up or down
Magnetic ordering at low temperature for Ising ferromagnets manifests itself within the associated Fortuin-Kasteleyn (FK) random cluster representation as the occurrence of a single positive density percolating network. In this paper we investigate t
Random boundary conditions are one of the simplest realizations of quenched disorder. They have been used as an illustration of various conceptual issues in the theory of disordered spin systems. Here we review some of these results.
We consider the free energy difference restricted to a finite volume for certain pairs of incongruent thermodynamic states (if they exist) in the Edwards-Anderson Ising spin glass at nonzero temperature. We prove that the variance of this quantity wi