ﻻ يوجد ملخص باللغة العربية
Recently, an extremely high superconducting temperature (Tc) of ~200 K has been reported in the sulfur hydride system above 100 GPa. This result is supported by theoretical predictions and verified experimentally. The crystal structure of the superconducting phase was also identified experimentally, confirming the theoretically predicted structure as well as a decomposition mechanism from H2S to H3S+S. Even though nuclear resonant scattering has been successfully used to provide magnetic evidence for a superconducting state, a direct measurement of the important Meissner effect is still lacking. Here we report in situ alternating-current magnetic susceptibility measurements on compressed H2S under high pressures. It is shown that superconductivity suddenly appears at 117 GPa and that Tc reaches 183 K at 149 GPa before decreasing monotonically with a further increase in pressure. This evolution agrees with both theoretical calculations and earlier experimental measurements. The idea of conventional high temperature superconductivity in hydrogen-dominant compounds has thus been realized in the sulfur hydride system under hydrostatic pressure, opening further exciting perspectives for possibly realizing room temperature superconductivity in hydrogen-based compounds.
A long-standing theoretical prediction is that in clean, nodal unconventional superconductors the magnetic penetration depth $lambda$, at zero temperature, varies linearly with magnetic field. This non-linear Meissner effect is an equally important m
Recently, phenyl molecules have been reported to exhibit Meissner effect mainly from magnetization measurements. Realizing zero-resistivity state in these materials seems a challenge due to many practical difficulties but is required to characterize
Recent reports of the detecting of ferromagnetism and superconductivity in ruthenium-cuprates have aroused great interest. Unfortunately, whether the two antagonistic phenomena coexist in the same space in the compounds remains unresolved. By employi
The hole concentration (p)(delta), the transition temperature Tc, the intragrain penetration depth lambda, and the Meissner effect were measured for annealed RuSr2(Gd,Ce)2Cu2O10+delta samples. The intragrain superconducting transition temperature Tc}
The experimental realization of high-temperature superconductivity in compressed hydrides H$_3$S and LaH$_{10}$ at high pressures over 150 GPa has aroused great interest in reducing the stabilization pressure of superconducting hydrides. For cerium h