ترغب بنشر مسار تعليمي؟ اضغط هنا

Binding Blocks: building the Universe one nucleus at the time

279   0   0.0 ( 0 )
 نشر من قبل Alessandro Pastore
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using LEGO$^{circledR}$ bricks. The activity, emph{Binding Blocks}, demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26,000 LEGO$^{circledR}$ bricks. It integrates A-level and GCSE curricula across areas of nuclear physics, astrophysics, and chemistry, including: nuclear decays (through the colours in the chart); nuclear binding energy (through tower heights); production of chemical elements in the cosmos; fusion processes in stars and fusion energy on Earth; as well as links to medical physics, particularly diagnostics and radiotherapy.



قيم البحث

اقرأ أيضاً

High resolution datasets of population density which accurately map sparsely-distributed human populations do not exist at a global scale. Typically, population data is obtained using censuses and statistical modeling. More recently, methods using re motely-sensed data have emerged, capable of effectively identifying urbanized areas. Obtaining high accuracy in estimation of population distribution in rural areas remains a very challenging task due to the simultaneous requirements of sufficient sensitivity and resolution to detect very sparse populations through remote sensing as well as reliable performance at a global scale. Here, we present a computer vision method based on machine learning to create population maps from satellite imagery at a global scale, with a spatial sensitivity corresponding to individual buildings and suitable for global deployment. By combining this settlement data with census data, we create population maps with ~30 meter resolution for 18 countries. We validate our method, and find that the building identification has an average precision and recall of 0.95 and 0.91, respectively and that the population estimates have a standard error of a factor ~2 or less. Based on our data, we analyze 29 percent of the world population, and show that 99 percent lives within 36 km of the nearest urban cluster. The resulting high-resolution population datasets have applications in infrastructure planning, vaccination campaign planning, disaster response efforts and risk analysis such as high accuracy flood risk analysis.
Using a model based on the Color Glass Condensate framework and the dilute-dense factorization, we systematically study the azimuthal angular correlations between a heavy flavor meson and a light reference particle in proton-nucleus collisions. The o btained second harmonic coefficients (also known as the elliptic flows) for $J/psi$ and $D^0$ agree with recent experimental data from the LHC. We also provide predictions for the elliptic flows of $Upsilon$ and $B$ meson, which can be measured in the near future at the LHC. This work can shed light on the physics origin of the collectivity phenomenon in the collisions of small systems.
The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam ics. The transport coefficients entering into the relativistic Langevin equation are evaluated by matching the hard-thermal-loop result for soft collisions with a perturbative QCD calculation for hard scatterings. The heavy-quark spectra thus obtained are employed to compute the differential cross sections, the nuclear modification factors R_AA and the elliptic flow coefficients v_2 of electrons from heavy-flavour decay.
629 - M. Monteno 2011
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav y-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.
458 - M.Alvioli , L. Frankfurt , V.Guzey 2014
We analyze $pA$ interactions at ultra-high energies within the semiclassical approximation for high energy processes accounting for the diffractive processes and a rapid increase with the incident energy of the coherence length. The fluctuations of t he strength of interaction expected in QCD and momentum conservation are taken into account also. We evaluate the number of wounded nucleons in soft and hard processes, the multiplicity of jets in the proton fragmentation region as a function of the variance of the distribution over the interaction strengths directly measured in forward diffractive $pN$ scattering for RHIC and LHC energies. We argue that these results could be used to test whether parton configurations containing a parton carrying the $xge 0.5$ fraction of the projectile momentum interact significantly weaker than on average. We also study leading twist shadowing and the EMC effect for superdense nuclear matter configurations probed in the events with larger than average number of wounded nucleons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا