ترغب بنشر مسار تعليمي؟ اضغط هنا

Signature of the N=126 shell closure in dwell times of alpha-particle tunneling

115   0   0.0 ( 0 )
 نشر من قبل Neelima Kelkar Dr
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number $N$ = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from $N=116$ to $N=132$ in Po nuclei reveals that the tunneling $alpha$ particle spends the least amount of time with an $N=126$ magic daughter nucleus. The shell closure at $N=126$ seems to affect the behaviour of the dwell times of the tunneling alpha particles and this occurs through the influence of the $Q$-values involved.



قيم البحث

اقرأ أيضاً

106 - X. Y. Wu , J. M. Yao 2019
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat ion on the observables that are relevant for understanding quadrupole collectivity and underlying shell structure are investigated. The general features of low-lying states in closed-shell nuclei are retained in these four isotopes around $N=126$, even though the shell gap is overall quenched by about 30% with the beyond mean-field effects. These effects are consistent with the previous generator-coordinate calculations based on Gogny forces, but much smaller than that predicted by the collective Hamiltonian calculation. It implies that the beyond mean-field effects on the $r$-process abundances before the third peak at $Asim195$ might be more moderate than that found in A. Arcones and G. F. Bertsch, Phys. Rev. Lett. 108, 151101 (2012).
Mass distributions of the fragments in the fission of $^{206}$Po and the N=126 neutron shell closed nucleus $^{210}$Po have been measured. No significant deviation of mass distributions has been found between $^{206}$Po and $^{210}$Po, indicating the absence of shell correction at the saddle point in both the nuclei, contrary to the reported angular anisotropy and pre-scission neutron multiplicity results. This new result provides benchmark data to test the new fission dynamical models to study the effect of shell correction on the potential energy surface at saddle point.
The first investigation of the single-particle structure of the bound states of 17C, via the d(16C, p) transfer reaction, has been undertaken. The measured angular distributions confirm the spin-parity assignments of 1/2+ and 5/2+ for the excited sta tes located at 217 and 335 keV, respectively. The spectroscopic factors deduced for these states exhibit a marked single-particle character, in agreement with shell model and particle-core model calculations, and combined with their near degeneracy in energy provide clear evidence for the absence of the N = 14 sub-shell closure. The very small spectroscopic factor found for the 3/2+ ground state is consistent with theoretical predictions and indicates that the { u}1d3/2 strength is carried by unbound states. With a dominant l = 0 valence neutron configuration and a very low separation energy, the 1/2+ excited state is a one-neutron halo candidate.
253 - K. Tshoo , Y. Satou , H. Bhang 2012
The unbound excited states of the neutron drip-line isotope 24O have been investigated via the 24O(p,p)23O+n reaction in inverse kinematics at a beam energy of 62 MeV/nucleon. The decay energy spectrum of 24O* was reconstructed from the momenta of 23 O and the neutron. The spin-parity of the first excited state, observed at Ex = 4.65 +/- 0.14 MeV, was determined to be Jpi = 2+ from the angular distribution of the cross section. Higher lying states were also observed. The quadrupole transition parameter beta2 of the 2+ state was deduced, for the first time, to be 0.15 +/- 0.04. The relatively high excitation energy and small beta2 value are indicative of the N = 16 shell closure in 24O.
462 - B. Bastin , S. Grevy , D. Sohler 2007
The energies of the excited states in very neutron-rich $^{42}$Si and $^{41,43}$P have been measured using in-beam $gamma$-ray spectroscopy from the fragmentation of secondary beams of $^{42,44}$S at 39 A.MeV. The low 2$^+$ energy of $^{42}$Si, 770(1 9) keV, together with the level schemes of $^{41,43}$P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that $^{42}$Si is best described as a well deformed oblate rotor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا