ﻻ يوجد ملخص باللغة العربية
An analytic solution for a Fokker-Planck equation that describes propagation of energetic particles through a scattering medium is obtained. The solution is found in terms of an infinite series of mixed moments of particle distribution. The spatial dispersion of a particle cloud released at t=0 evolves through three phases, ballistic (t<Tc), transdiffusive (t~Tc) and diffusive (t>>Tc), where Tc is the collision time.The ballistic phase is characterized by a decelerating expansion of the initial point source in form of a box distribution with thickening walls. The next, transdiffusive phase is marked by the box walls thickened to its size and a noticeable slow down of expansion. Finally, the evolution enters the conventional diffusion phase.
Shortfalls in cosmic ray (CR) propagation models obscure the CR sources and acceleration mechanisms. This problem became particularly obvious after the Fermi, Pamela, and AMS-02 have discovered the electron/positron and $p/$He spectral anomalies. Mos
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise
We investigate the diffusion of particles in an attractive one-dimensional potential that grows logarithmically for large $|x|$ using the Fokker-Planck equation. An eigenfunction expansion shows that the Boltzmann equilibrium density does not fully
The Fokker-Planck equation derived by Brown for the probability density function of the orientation of the magnetic moment of single domain particles is one of the basic equations in the theory of superparamagnetism. Usually this equation is solved b
Structure-preserving discretization of the Rosenbluth-Fokker-Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth-Fokker-Planck scheme is introduced. The stru