ﻻ يوجد ملخص باللغة العربية
We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions ($propto 1/r^alpha$ with distance $r$), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of $alpha$ for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on $alpha$ as well as on the quench parameters.
Antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that next nearest neighbor i
We propose the construction of a many-body phase of matter with fractal structure using arrays of Rydberg atoms. The degenerate low energy excited states of this phase form a self-similar fractal structure. This phase is analogous to the so-called ty
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating
Superconducting circuits are currently developed as a versatile platform for the exploration of many-body physics, both at the analog and digital levels. Their building blocks are often idealized as two-level qubits, drawing powerful analogies to qua
Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $mathb