ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Optimal Parameters for Multi-target Tracking with Contextual Interactions

70   0   0.0 ( 0 )
 نشر من قبل Shaofei Wang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an end-to-end framework for learning parameters of min-cost flow multi-target tracking problem with quadratic trajectory interactions including suppression of overlapping tracks and contextual cues about cooccurrence of different objects. Our approach utilizes structured prediction with a tracking-specific loss function to learn the complete set of model parameters. In this learning framework, we evaluate two different approaches to finding an optimal set of tracks under a quadratic model objective, one based on an LP relaxation and the other based on novel greedy variants of dynamic programming that handle pairwise interactions. We find the greedy algorithms achieve almost equivalent accuracy to the LP relaxation while being up to 10x faster than a commercial LP solver. We evaluate trained models on three challenging benchmarks. Surprisingly, we find that with proper parameter learning, our simple data association model without explicit appearance/motion reasoning is able to achieve comparable or better accuracy than many state-of-the-art methods that use far more complex motion features or appearance affinity metric learning.



قيم البحث

اقرأ أيضاً

Multi-target multi-camera tracking (MTMCT) systems track targets across cameras. Due to the continuity of target trajectories, tracking systems usually restrict their data association within a local neighborhood. In single camera tracking, local neig hborhood refers to consecutive frames; in multi-camera tracking, it refers to neighboring cameras that the target may appear successively. For similarity estimation, tracking systems often adopt appearance features learned from the re-identification (re-ID) perspective. Different from tracking, re-ID usually does not have access to the trajectory cues that can limit the search space to a local neighborhood. Due to its global matching property, the re-ID perspective requires to learn global appearance features. We argue that the mismatch between the local matching procedure in tracking and the global nature of re-ID appearance features may compromise MTMCT performance. To fit the local matching procedure in MTMCT, in this work, we introduce locality aware appearance metric (LAAM). Specifically, we design an intra-camera metric for single camera tracking, and an inter-camera metric for multi-camera tracking. Both metrics are trained with data pairs sampled from their corresponding local neighborhoods, as opposed to global sampling in the re-ID perspective. We show that the locally learned metrics can be successfully applied on top of several globally learned re-ID features. With the proposed method, we report new state-of-the-art performance on the DukeMTMC dataset, and a substantial improvement on the CityFlow dataset.
We propose a contextual-bandit approach for demand side management by offering price incentives. More precisely, a target mean consumption is set at each round and the mean consumption is modeled as a complex function of the distribution of prices se nt and of some contextual variables such as the temperature, weather, and so on. The performance of our strategies is measured in quadratic losses through a regret criterion. We offer $T^{2/3}$ upper bounds on this regret (up to poly-logarithmic terms)---and even faster rates under stronger assumptions---for strategies inspired by standard strategies for contextual bandits (like LinUCB, see Li et al., 2010). Simulations on a real data set gathered by UK Power Networks, in which price incentives were offered, show that our strategies are effective and may indeed manage demand response by suitably picking the price levels.
Recently unsupervised domain adaptation for the semantic segmentation task has become more and more popular due to high-cost of pixel-level annotation on real-world images. However, most domain adaptation methods are only restricted to single-source- single-target pair, and can not be directly extended to multiple target domains. In this work, we propose a collaborative learning framework to achieve unsupervised multi-target domain adaptation. An unsupervised domain adaptation expert model is first trained for each source-target pair and is further encouraged to collaborate with each other through a bridge built between different target domains. These expert models are further improved by adding the regularization of making the consistent pixel-wise prediction for each sample with the same structured context. To obtain a single model that works across multiple target domains, we propose to simultaneously learn a student model which is trained to not only imitate the output of each expert on the corresponding target domain, but also to pull different expert close to each other with regularization on their weights. Extensive experiments demonstrate that the proposed method can effectively exploit rich structured information contained in both labeled source domain and multiple unlabeled target domains. Not only does it perform well across multiple target domains but also performs favorably against state-of-the-art unsupervised domain adaptation methods specially trained on a single source-target pair
Visual tracking is typically solved as a discriminative learning problem that usually requires high-quality samples for online model adaptation. It is a critical and challenging problem to evaluate the training samples collected from previous predict ions and employ sample selection by their quality to train the model. To tackle the above problem, we propose a joint discriminative learning scheme with the progressive multi-stage optimization policy of sample selection for robust visual tracking. The proposed scheme presents a novel time-weighted and detection-guided self-paced learning strategy for easy-to-hard sample selection, which is capable of tolerating relatively large intra-class variations while maintaining inter-class separability. Such a self-paced learning strategy is jointly optimized in conjunction with the discriminative tracking process, resulting in robust tracking results. Experiments on the benchmark datasets demonstrate the effectiveness of the proposed learning framework.
This article presents a semantic tracker which simultaneously tracks a single target and recognises its category. In general, it is hard to design a tracking model suitable for all object categories, e.g., a rigid tracker for a car is not suitable fo r a deformable gymnast. Category-based trackers usually achieve superior tracking performance for the objects of that specific category, but have difficulties being generalised. Therefore, we propose a novel unified robust tracking framework which explicitly encodes both generic features and category-based features. The tracker consists of a shared convolutional network (NetS), which feeds into two parallel networks, NetC for classification and NetT for tracking. NetS is pre-trained on ImageNet to serve as a generic feature extractor across the different object categories for NetC and NetT. NetC utilises those features within fully connected layers to classify the object category. NetT has multiple branches, corresponding to multiple categories, to distinguish the tracked object from the background. Since each branch in NetT is trained by the videos of a specific category or groups of similar categories, NetT encodes category-based features for tracking. During online tracking, NetC and NetT jointly determine the target regions with the right category and foreground labels for target estimation. To improve the robustness and precision, NetC and NetT inter-supervise each other and trigger network adaptation when their outputs are ambiguous for the same image regions (i.e., when the category label contradicts the foreground/background classification). We have compared the performance of our tracker to other state-of-the-art trackers on a large-scale tracking benchmark (100 sequences)---the obtained results demonstrate the effectiveness of our proposed tracker as it outperformed other 38 state-of-the-art tracking algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا