ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulation of elasticity and interactions in charged lipid multibilayers: monovalent salt solutions

59   0   0.0 ( 0 )
 نشر من قبل Bing-Sui Lu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the electrostatic screening effect of NaCl solutions on the interactions between anionic lipid bilayers in the fluid lamellar phase using a Poisson-Boltzmann based mean-field approach with constant charge and constant potential limiting charge regulation boundary conditions. The full DLVO potential, including the electrostatic, hydration and van der Waals interactions, was coupled to thermal bending fluctuations of the membranes via a variational Gaussian Ansatz. This allowed us to analyze the coupling between the osmotic pressure and the fluctuation amplitudes and compare them both simultaneously with the measured dependence on the bilayer separation, determined by the small-angle X-ray scattering experiments. High-structural resolution analysis of the scattering data revealed no significant changes of membrane structure as a function of salt concentration. Parsimonious description of our results is consistent with the constant charge limit of the general charge regulation phenomenology, with fully dissociated lipid charge groups, together with a four-fold reduction of the membranes bending rigidity upon increasing NaCl concentration.



قيم البحث

اقرأ أيضاً

67 - Toan T. Nguyen 2017
A Grand-canonical Monte-Carlo simulation method extended to simulate a mixture of salts is presented. Due to charge neutrality requirement of electrolyte solutions, ions must be added to or removed from the system in groups. This leads to some compli cations compared to regular Grand Canonical simulation. Here, a recipe for simulation of electrolyte solution of salt mixture is presented. It is then implemented to simulate solution of 1:1, 2:1 and 2:2 salts or their mixtures at different concentrations using the primitive ion model. The osmotic pressures of the electrolyte solutions are calculated and shown to depend linearly on the salt concentrations within the concentration range simulated. We also show that at the same concentration of divalent anions, the presence of divalent cations make it easier to insert monovalent cations into the system. This can explain some quantitative differences observed in experiments of the MgCl$_2$ salt mixture and MgSO$_4$ salt mixture.
We discuss the distribution of ions around highly charged PEs when there is competition between monovalent and multivalent ions, pointing out that in this case the number of condensed ions is sensitive to short-range interactions, salt, and model-dep endent approximations. This sensitivity is discussed in the context of recent experiments on DNA aggregation, induced by multivalent counterions such as spermine and spermidine.
We consider how membrane fluctuations can modify the miscibility of lipid mixtures, that is to say how the phase diagram of a boundary-constrained membrane is modified when the membrane is allowed to fluctuate freely in the case of zero surface tensi on. In order for fluctuations to have an effect, the different lipid types must have differing Gaussian rigidities. We show, somewhat paradoxically, that fluctuation-induced interactions can be treated approximately in a mean-field type theory. Our calculations predict that, depending on the difference in bending and Gaussian rigidity of the lipids, membrane fluctuations can either favor or disfavor mixing.
123 - William Kung , A.W.C. Lau 2006
We present an exact field-theoretic formulation for a fluctuating, generally asymmetric, salt density in the presence of a charged plate. The non-linear Poisson-Boltzmann equation is obtained as the saddle-point of our field theory action. Focusing o n the case of symmetric salt, we systematically compute first-order corrections arising from electrolytes fluctuation to the free energy density, which can be explicitly obtained in closed form. We find that for systems with low to moderate salt density, fluctuation corrections to the free-energy depends sensitively on the salt concentration as well as their charge valency. Further, we find that electrolyte fluctuation leads to a reduced electrostatic repulsion between two point-charges when they are close to the charged plate.
Using super-heterodyne Doppler velocimetry with multiple scattering correction, we extend the opti-cally accessible range of concentrations in experiments on colloidal electro-kinetics. We here meas-ured the electro-phoretic mobility and the DC condu ctivity of aqueous charged sphere suspensions covering about three orders of magnitude in particle concentrations and transmissions as low as 40%. The extended concentration range for the first time allows the demonstration of a non-monotonic con-centration dependence of the mobility for a single particle species. Our observations reconcile previ-ous experimental observations made on other species over restricted concentration ranges. We com-pare our results to state of the art theoretical calculations using a constant particle charge and the carefully determined experimental boundary conditions as input. In particular, we consider so-called realistic salt free conditions, i.e. we respect the release of counter-ions by the particles, the solvent hydrolysis and the formation of carbonic acid from dissolved neutral CO2. We also compare to previ-ous results obtained under similarly well-defined conditions. This allows identification of three dis-tinct regions of differing density dependence. An ascent during the built up of double layer overlap which is not expected by theory, an extended plateau region in quantitative agreement with theoretical expectation based on a constant effective charge and a sudden decrease which occurs way before the expected gradual decrease. Our observations suggest a relation of the non-monotonic behavior to a decrease of particle charge, and we tentatively discuss possibly underlying mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا