ﻻ يوجد ملخص باللغة العربية
Cosmic dusts are mostly responsible for polarization of the light that we ob- serve from astrophysical objects. They also lead to color-extinction, thermal re- emission and other scattering related phenomena. Dusts are made of small particles which are characterised by their size (radius), composition (matter), and structure (morphology, including porosity). In the present work, we address the question of the role of the dust particle porosity on light polarization and color, using Discrete Dipole Approximation (DDA) light scattering code. To answer this question, we developed an algorithm to generate solid particles of arbitrary values of porosity. In brief, the model considers a given homogeneous structure made of touching dipoles. The dipoles are randomly removed one by one, such that the remaining structure remains connected. We stop the removal process when the desired poros- ity is obtained. Then we study the optical properties of the porous particle. That way, we show how the proper value of the porosity affects the polarization and color of the light scattered by these porous particles. In addition to polarization, porosity has important effects on photometric color. Considering an important application, we emphasize the possible role of the porosity of the cometary dust particles on polarization and color of the light scattered by cometary coma.
It has been suggested that the comet-like activity of Main Belt Comets is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such i
Aims: In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected fro
The long-term dynamics of Oort cloud comets are studied under the influence of both the radial and the vertical components of the Galactic tidal field. Sporadic dynamical perturbation processes are ignored, such as passing stars, since we aim to stud
The characterization of the dust polarization foreground to the Cosmic Microwave Background (CMB) is a necessary step towards the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of p
(abridged) In the inner regions of AGB outflows, several molecules have been detected with abundances much higher than those predicted from thermodynamic equilibrium (TE) chemical models. The presence of the majority of these species can be explained