ﻻ يوجد ملخص باللغة العربية
Double parton scattering (DPS) is studied at the example of $J/psi$ pair-production in the LHCb and ATLAS experiments of the Large Hadron Collider (LHC) at centre-of-mass energies of $sqrt{S}=$ 7, 8, and 13 TeV. We report theoretical predictions delivered to the LHCb and ATLAS collaborations adjusted for the fiducial volumes of the corresponding measurements during Run I and provide new predictions at 13 TeV collision energy. It is shown that DPS can lead to noticeable contributions in the distributions of longitudinal variables of the di-$J/psi$ system, especially at 13 TeV. The increased DPS rate in double $J/psi$ production at high energies will open up more possibilities for the separation of single parton scattering (SPS) and DPS contributions in future studies.
The associated production of J/psi + gamma at the LHC is studied within the NRQCD framework. The signal we focus on is the production of a J/psi and an isolated photon produced back-to-back, with their transverse momenta balanced. It is shown that ev
In this work, we investigate the prompt $J/psi$ production in associated with top quark pair to leading order in the nonrelativistic QCD factorization formalism at the LHC with $sqrt{s} =13$ TeV. In addition to the contribution from direct $J/psi$ pr
For $J/psi$ pair production at hadron colliders, we present the full next-to-leading order (NLO) calculations with the color-singlet channel in nonrelativistic QCD. We find that the NLO result can reasonably well describe the LHCb measured cross sect
We examine present data for double parton scattering at LHC and discuss their energy dependence from its earliest measurements at the ISR. Different models for the effective cross-section are considered and their behavior studied for a variety of sel
We present predictions for the double parton scattering (DPS) four-jet production cross sections in $pA$ collisions at the LHC. Relying on the experimental capabilities to correlate centrality with impact parameter $B$ of the proton-nucleus collision