ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott transition in the A15 phase of Cs$_{3} $C$_{60}$: absence of pseudogap and charge order

297   0   0.0 ( 0 )
 نشر من قبل Pawel Wzietek
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed NMR study of the insulator to metal transition induced by an applied pressure $p$ in the A15 phase of Cs$_{3}$C$_{60}$. We evidence that the insulating antiferromagnetic (AF) and superconducting (SC) phases only coexist in a narrow $p$ range. At fixed $p$, in the metallic state above the SC transition $T_c$, the $^{133}$Cs and $^{13}$C NMR spin lattice relaxation data are seemingly governed by a pseudogap like feature. We prove that this feature, also seen in the $^{133}$Cs NMR shift data is rather a signature of the Mott transition, which broadens and smears out progressively for increasing $(p,T)$. The analysis of the variation of the quadrupole splitting $ u _{Q}$ of the $^{133}$Cs NMR spectrum precludes any cell symmetry change at the Mott transition and only monitors a weak variation of lattice parameter. These results open an opportunity to consider theoretically the Mott transition in a multiorbital three dimensional system well beyond its critical point.



قيم البحث

اقرأ أيضاً

134 - P.Wzietek , T.Mito , H. Alloul 2013
Former extensive studies of superconductivity in the textit{A}$_{3}$C$_{60}$ compounds, where textit{A} is an alkali, have led to consider that Bardeen Cooper Schrieffer (BCS) electron-phonon pairing prevails in those compounds, though the incidence of electronic Coulomb repulsion has been highly debated. The discovery of two isomeric fulleride compounds Cs$_{3}$C$_{60}$ which exhibit a transition with pressure from a Mott insulator (MI) to a superconducting (SC) state clearly re-opens that question. Using pressure ($p$) as a single control parameter of the C$_{60}$ balls lattice spacing, one can now study the progressive evolution of the SC properties when the electronic correlations are increased towards the critical pressure $p_{c}$ of the Mott transition. We have used $^{13}$C and $^{133}$Cs NMR measurements on the cubic phase A15-Cs$_{3}$C$_{60}$ just above $p_{c}=5.0(3)$ kbar, where the SC transition temperature $T_{c}$ displays a dome shape with decreasing cell volume. From the $T$ dependence below $T_{c}$ of the nuclear spin lattice relaxation rate $(T_{1})^{-1}$ we determine the electronic excitations in the SC state, that is $2Delta$, the SC gap value. We find that $2Delta $ increases with decreasing $p$ towards $p_{c}$, where $T_{c}$ decreases on the SC dome, so that $2Delta /k_{B}T_{c}$ increases regularly upon approaching the Mott transition. These results bring clear evidence that the increasing correlations near the Mott transition are not significantly detrimental to SC. They rather suggest that repulsive electron interactions might even reinforce elecron-phonon SC, being then partly responsible for the large $T_{c}$ values, as proposed by theoretical models taking the electronic correlations as a key ingredient.
We investigate the double layered Sr$_{3}$(Ru$_{1-x}$Mn$_{x}$)$_{2}$O$_{7}$ and its doping-induced quantum phase transition (QPT) from a metal to an antiferromagnetic (AFM) Mott insulator. Using spectroscopic imaging with the scanning tunneling micro scope (STM), we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap in the tunneling density of states at the Fermi energy (E$_{F}$) that develops with doping to form a weak Mott insulating ({Delta} ~ 100meV) state. Near the QPT, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings share some resemblance to the well-established universal charge order in the pseudogap phase of cuprates. Our experiments therefore demonstrate the ubiquity of the incipient charge order that emanates from doped Mott insulators.
124 - G. Giovannetti , M. Capone 2012
Cs$_3$C$_{60}$ in the A15 structure is an antiferromagnet at ambient pressure in contrast with other superconducting trivalent fullerides. Superconductivity is recovered under pressure and reaches the highest critical temperature of the family. Compa ring density-functional calculations with generalized gradient approximation to the hybrid functional HSE, which includes a suitable component of exchange, we establish that the antiferromagnetic state of Cs$_3$C$_{60}$ is not due to a Slater mechanism, and it is stabilized by electron correlation. HSE also reproduces the pressure-driven metalization. Our findings corroborate previous analyses suggesting that the properties of this compound can be understood as the result of the interplay between electron correlations and Jahn-Teller electron-phonon interaction.
It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on- site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.
105 - Changming Yue , Yusuke Nomura , 2021
Thin films provide a versatile platform to tune electron correlations and explore new physics in strongly correlated materials. Epitaxially grown thin films of the alkali-doped fulleride K$_{3+x}$C$_{60}$, for example, exhibit various intriguing phen omena, including Mott transitions and superconductivity, depending on dimensionality and doping. Surprisingly, in the trilayer case, a strong electron-hole doping asymmetry has been observed in the superconducting phase, which is absent in the three-dimensional bulk limit. Using density-functional theory plus dynamical mean-field theory, we show that this doping asymmetry results from a substantial charge reshuffling from the top layer to the middle layer. While the nominal filling per fullerene is close to $n=3$, the top layer rapidly switches to an $n=2$ insulating state upon hole doping, which explains the doping asymmetry of the superconducting gap. The interlayer charge transfer and layer-selective metal-insulator transition result from the interplay between crystal field splittings, strong Coulomb interactions, and an effectively negative Hund coupling. This peculiar charge reshuffling is absent in the monolayer system, which is an $n=3$ Mott insulator, as expected from the nominal filling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا