ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Changes in the Hyperluminous Pulsar in NGC 5907 as a Function of Super-Orbital Phase

101   0   0.0 ( 0 )
 نشر من قبل Felix Fuerst
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Fuerst




اسأل ChatGPT حول البحث

We present broad-band, multi-epoch X-ray spectroscopy of the pulsating ultra-luminous X-ray source (ULX) in NGC 5907. Simultaneous XMM-Newton and NuSTAR data from 2014 are best described by a multi-color black-body model with a temperature gradient as a function of accretion disk radius significantly flatter than expected for a standard thin accretion disk (T(r) ~ r^{-p}, with p=0.608^{+0.014}_{-0.012}). Additionally, we detect a hard power-law tail at energies above 10 keV, which we interpret as being due to Comptonization. We compare this observation to archival XMM-Newton, Chandra, and NuSTAR data from 2003, 2012, and 2013, and investigate possible spectral changes as a function of phase over the 78d super-orbital period of this source. We find that observations taken around phases 0.3-0.4 show very similar temperature profiles, even though the observed flux varies significantly, while one observation taken around phase 0 has a significantly steeper profile. We discuss these findings in light of the recent discovery that the compact object is a neutron star and show that precession of the accretion disk or the neutron star can self-consistently explain most observed phenomena.



قيم البحث

اقرأ أيضاً

89 - F. Fuerst 2018
We present a timing analysis of multiple XMM-Newton and NuSTAR observations of the ultra-luminous pulsar NGC 7793 P13 spread over its 65d variability period. We use the measured pulse periods to determine the orbital ephemeris, confirm a long orbital period with P_orb = 63.9 (+0.5,-0.6) d, and find an eccentricity of e <= 0.15. The orbital signature is imprinted on top of a secular spin-up, which seems to get faster as the source becomes brighter. We also analyse data from dense monitoring of the source with Swift and find an optical photometric period of 63.9 +/- 0.5 d and an X-ray flux period of 66.8 +/- 0.4 d. The optical period is consistent with the orbital period, while the X-ray flux period is significantly longer. We discuss possible reasons for this discrepancy, which could be due to a super-orbital period caused by a precessing accretion disk or an orbital resonance. We put the orbital period of P13 into context with the orbital periods implied for two other ultra-luminous pulsars, M82 X-2 and NGC 5907 ULX and discuss possible implications for the system parameters.
306 - Andrew D. Sutton 2013
We present a multi-mission X-ray analysis of a bright (peak observed 0.3-10 keV luminosity of ~ 6x10^{40} erg s^{-1}), but relatively highly absorbed ULX in the edge-on spiral galaxy NGC 5907. The ULX is spectrally hard in X-rays (Gamma ~ 1.2-1.7, wh en fitted with an absorbed power-law), and has a previously-reported hard spectral break consistent with it being in the ultraluminous accretion state. It is also relatively highly absorbed for a ULX, with a column of ~ 0.4-0.9x10^{22} atom cm^{-2} in addition to the line-of-sight column in our Galaxy. Although its X-ray spectra are well represented by accretion disc models, its variability characteristics argue against this interpretation. The ULX spectra instead appear dominated by a cool, optically-thick Comptonising corona. We discuss how the measured 9 per cent rms variability and a hardening of the spectrum as its flux diminishes might be reconciled with the effects of a very massive, radiatively-driven wind, and subtle changes in the corona respectively. We speculate that the cool disc-like spectral component thought to be produced by the wind in other ULXs may be missing from the observed spectrum due to a combination of a low temperature (~ 0.1 keV), and the high column to the ULX. We find no evidence, other than its extreme X-ray luminosity, for the presence of an intermediate mass black hole (~ 10^2 - 10^4 Msun) in this object. Rather, the observations can be consistently explained by a massive (greater than ~ 20 Msun) stellar remnant black hole in a super-Eddington accretion state.
We report on the serendipitous discovery of a new transient in NGC 5907, at a peak luminosity of 6.4x10^{39} erg/s. The source was undetected in previous 2012 Chandra observations with a 3 sigma upper limit on the luminosity of 1.5x10^{38} erg/s, imp lying a flux increase of a factor of >35. We analyzed three recent 60ks/50ks Chandra and 50ks XMM-Newton observations, as well as all the available Swift observations performed between August 2017/March 2018. Until the first half of October 2017, Swift observations do not show any emission from the source. The transient entered the ULX regime in less than two weeks and its outburst was still on-going at the end of February 2018. The 0.3-10 keV spectrum is consistent with a single multicolour blackbody disc (kT~1.5 keV). The source might be a ~30 solar mass black hole accreting at the Eddington limit. However, although we did not find evidence of pulsations, we cannot rule-out the possibility that this ULX hosts an accreting neutron star.
Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any X-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showin g that NGC5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43~s in 2003 to 1.13~s in 2014. It has an isotropic peak luminosity of about 1000 times the Eddington limit for a NS at 17.1~Mpc. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity > 10^{41} erg/s) might harbor NSs.
We report optical modulation of the companion to the X-ray source U18 in the globular cluster NGC 6397. U18, with combined evidence from radio and X-ray measurements, is a strong candidate as the second redback in this cluster, initially missed in pu lsar searches. This object is a bright variable star with an anomalous red color and optical variability (sim 0.2 mag in amplitude) with a periodicity sim 1.96 days that can be interpreted as the orbital period. This value corresponds to the longest orbital period for known redback candidates and confirmed systems in Galactic globular clusters and one of the few with a period longer than 1 day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا