ﻻ يوجد ملخص باللغة العربية
Nematic order is ubiquitous in liquid crystals and is characterized by a rotational symmetry breaking in an otherwise uniform liquid. Recently a similar phenomenon has been observed in some electronic phases of quantum materials related to high temperature superconductivity, particularly in the Fe-based superconductors. While several experiments have probed nematic fluctuations, they have been primarily restricted to the uniform nematic susceptibility, i.e. q = 0 fluctuations. Here, we investigate the behavior of finite-momentum nematic fluctuations by measuring transverse acoustic phonon modes with wavelengths of up to 25 unit cells in the prototypical Fe-based compound Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. While the slope of the phonon dispersion gives information about the uniform nematic susceptibility, deviations from this linear behavior at finite but small wave-vectors are attributed to finite-momentum nematic fluctuations. Surprisingly, these non-zero q fluctuations lead to a softening of the phonon mode below the superconducting transition temperature, in contrast to the behavior of the phonon velocity at q = 0, which increases below $T_c$. Our work not only establishes a sound method to probe long wavelength nematic fluctuations, but also sheds light on the unique interplay between nematicity and superconductivity in Fe-based compounds.
Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatu
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m
We investigate the iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$ using a terahertz (THz) pump near-infrared probe scheme. In the superconducting state we observe an instantaneous signal that is assigned to a non-linear THz Kerr effect. The TH
We report a doping dependent electronic Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals. A strongly anisotropic gap is found at optimal doping for x=0.065 with $Delta_{max}sim 5Delta_{min}$
Measurements of the current-voltage characteristics were performed on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with doping level $0.044 leq x leq 0.1$. An unconventional increase in the flux-flow resistivity $rho_{rm ff}$ with decreasing magnet