ﻻ يوجد ملخص باللغة العربية
We compute the non-thermal emissions produced by relativistic particles accelerated by the AGN-driven shocks in NGC 1068, and we compare the model predictions with the observed gamma-ray and radio spectra . The former is contributed by pion decay, inverse Compton scattering, and bremsstrahlung, while the latter is produced by synchrotron radiation. We derive the gamma-ray and radio emissions by assuming the standard acceleration theory, and we discuss how our results compare with those corresponding to other commonly assumed sources of gamma-ray and radio emissions, like Supernova remnants (SNR) or AGN jets. We find that the AGN-driven shocks observed in the circumnuclear molecular disk of such a galaxy provide a contribution to the gamma-ray emission comparable to that provided by the starburst activity when standard particle acceleration efficiencies are assumed, while they can yield the whole gamma-ray emission only when the parameters describing the acceleration efficiency and the proton coupling with the molecular gas are tuned to values larger than those assumed in standard, SNR-driven shocks. We discuss the range of acceleration efficiencies (for protons and electrons) and of proton calorimetric fractions required to account for the observed gamma-ray emission in the AGN outflow model. We further compare the neutrino flux expected in our model with constraints from current experiments, and we provide predictions for the detections by the upcoming KM3NeT neutrino telescope. This analysis strongly motivates observations of NGC 1068 at >TeV energies with current and future Cherenkov telescopes in order to gain insight into the nature of the gamma-rays source.
Several observations are revealing the widespread occurrence of mildly relativistic wide-angle AGN winds strongly interacting with the gas of their host galaxy. Such winds are potential cosmic-ray accelerators, as supported by gamma-ray observations
Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to veloci
Extragalactic cosmic ray populations are important diagnostic tools for tracking the distribution of energy in nuclei and for distinguishing between activity powered by star formation versus active galactic nuclei (AGNs). Here, we compare different d
Starburst galaxies and star-forming active galactic nuclei (AGN) are among the candidate sources thought to contribute appreciably to the extragalactic gamma-ray and neutrino backgrounds. NGC 1068 is the brightest of the star-forming galaxies found t
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6-2858 (or 3FGL J1745.6-2859c) in the Galactic Center and the diffuse hard X-ray