ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale imaging of current density with a single-spin magnetometer

88   0   0.0 ( 0 )
 نشر من قبل Christian Degen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge transport in nanostructures and thin films is fundamental to many phenomena and processes in science and technology, ranging from quantum effects and electronic correlations in mesoscopic physics, to integrated charge- or spin-based electronic circuits, to photoactive layers in energy research. Direct visualization of the charge flow in such structures is challenging due to their nanometer size and the itinerant nature of currents. In this work, we demonstrate non-invasive magnetic imaging of current density in two-dimensional conductor networks including metallic nanowires and carbon nanotubes. Our sensor is the electronic spin of a diamond nitrogen-vacancy center attached to a scanning tip. Using a differential measurement technique, we detect DC currents down to a few uA above a baseline current density of 2e4 A/cm2. Reconstructed images have a spatial resolution of typically 50 nm, with a best-effort value of 22 nm. Current density imaging offers a new route for studying electronic transport and conductance variations in two-dimensional materials and devices, with many exciting applications in condensed matter physics.



قيم البحث

اقرأ أيضاً

The detection of ensembles of spins under ambient conditions has revolutionized the biological, chemical, and physical sciences through magnetic resonance imaging and nuclear magnetic resonance. Pushing sensing capabilities to the individual-spin lev el would enable unprecedented applications such as single molecule structural imaging; however, the weak magnetic fields from single spins are undetectable by conventional far-field resonance techniques. In recent years, there has been a considerable effort to develop nanoscale scanning magnetometers, which are able to measure fewer spins by bringing the sensor in close proximity to its target. The most sensitive of these magnetometers generally require low temperatures for operation, but measuring under ambient conditions (standard temperature and pressure) is critical for many imaging applications, particularly in biological systems. Here we demonstrate detection and nanoscale imaging of the magnetic field from a single electron spin under ambient conditions using a scanning nitrogen-vacancy (NV) magnetometer. Real-space, quantitative magnetic-field images are obtained by deterministically scanning our NV magnetometer 50 nanometers above a target electron spin, while measuring the local magnetic field using dynamically decoupled magnetometry protocols. This single-spin detection capability could enable single-spin magnetic resonance imaging of electron spins on the nano- and atomic scales and opens the door for unique applications such as mechanical quantum state transfer.
We report on imaging of microwave (MW) magnetic fields using a magnetometer based on the electron spin of a nitrogen vacancy center in diamond. We quantitatively image the magnetic field generated by high frequency (GHz) MW current with nanoscale res olution using a scanning probe technique. We demonstrate a MW magnetic field sensitivity in the range of a few nT/$sqrt{text{Hz}}$, polarization selection and broadband capabilities under ambient conditions and thereby establish the nitrogen vacancy center a versatile and high performance tool for the detection of MW fields. As a first application of this scanning MW detector, we determine the MW current density in a stripline and demonstrate a MW current sensitivity of a few nA/$sqrt{text{Hz}}$
Microscopic studies of superconductors and their vortices play a pivotal role in our understanding of the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray-fields enable access to fundamental aspects of superconductors such as nanoscale variations of superfluid densities or the symmetry of their order parameter. However, experimental tools, which offer quantitative, nanoscale magnetometry and operate over the large range of temperature and magnetic fields relevant to address many outstanding questions in superconductivity, are still missing. Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBCO, using a scanning quantum sensor in form of a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample distance of ~10nm we achieve allows us to observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, while we find excellent quantitative agreement with Pearls analytic model. Our experiments yield a non-invasive and unambiguous determination of the systems local London penetration depth, and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning NV magnetometry.
The ability to perform nanoscale electric field imaging of elementary charges at ambient temperatures will have diverse interdisciplinary applications. While the nitrogen-vacancy (NV) center in diamond is capable of high-sensitivity electrometry, dem onstrations have so far been limited to macroscopic field features or detection of single charges internal to diamond itself. In this work we greatly extend these capabilities by using a shallow NV center to image the electric field of a charged atomic force microscope tip with nanoscale resolution. This is achieved by measuring Stark shifts in the NV spin-resonance due to AC electric fields. To achieve this feat we employ for the first time, the integration of Qdyne with scanning quantum microscopy. We demonstrate near single charge sensitivity of $eta_e = 5.3$ charges/$sqrt{text{Hz}}$, and sub-charge detection ($0.68e$). This proof-of-concept experiment provides the motivation for further sensing and imaging of electric fields using NV centers in diamond.
The recent discovery of ferromagnetism in 2D van der Waals (vdw) crystals has generated widespread interest, owing to their potential for fundamental and applied research. Advancing the understanding and applications of vdw magnets requires methods t o quantitatively probe their magnetic properties on the nanoscale. Here, we report the study of atomically thin crystals of the vdw magnet CrI$_3$ down to individual monolayers using scanning single-spin magnetometry, and demonstrate quantitative, nanoscale imaging of magnetisation, localised defects and magnetic domains. We determine the magnetisation of CrI$_3$ monolayers to be $approx16~mu_B/$nm$^2$ and find comparable values in samples with odd numbers of layers, whereas the magnetisation vanishes when the number of layers is even. We also establish that this inscrutable even-odd effect is intimately connected to the material structure, and that structural modifications can induce switching between ferro- and anti-ferromagnetic interlayer ordering. Besides revealing new aspects of magnetism in atomically thin CrI$_3$ crystals, these results demonstrate the power of single-spin scanning magnetometry for the study of magnetism in 2D vdw magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا