ﻻ يوجد ملخص باللغة العربية
We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.
We propose a model that all quark and lepton mass matrices have the same zero texture. Namely their (1,1), (1,3) and (3,1) components are zeros. The mass matrices are classified into two types I and II. Type I is consistent with the experimental data
The hierarchical quark masses and small mixing angles are shown to lead to a simple triangular form for the U- and D-type quark mass matrices. In the basis where one of the matrices is diagonal, each matrix element of the other is, to a good approxim
We propose a model for the quark masses and mixings based on an A_4 family symmetry. Three scalar SU(2) doublets form a triplet of A_4. The three left-handed-quark SU(2) doublets are also united in a triplet of A_4. The right-handed quarks are single
If the $X(3872)$ is described by the picture as a mixture of the charmonium and molecular $D^{ast} D$ states; $Y(3940)$ as a mixture of the $chi_{c0}$ and $D^ast D^ast$ states; and $X(4260)$ as a mixture of the tetra-quark and charmonium sates, their
We perform a systematic analysis of all possible texture zeros in general and symmetric quark mass matrices. Using the values of masses and mixing parameters at the electroweak scale, we identify for both cases the maximally restrictive viable textur