ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric and Spectroscopic Study of the Supergiant with an Infrared Excess V1027 Cygni

67   0   0.0 ( 0 )
 نشر من قبل Natalia Ikonnikova
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of our $UBV$ and $JHKLM$-photometry for the semiregular pulsating variable V1027~Cyg, a supergiant with an infrared excess, over the period from 1991 to 2015. Our search for a periodicity in the $UBV$ brightness variations has led to several periods from $P=212^{d}$ to $P=320^{d}$ in different time intervals. We have found the period $P=237^{d}$ based on our infrared photometry. The variability amplitude, the light-curve shape, and the magnitude of V1027~Cyg at maximum light change noticeably from cycle to cycle. An ambiguous correlation of the $B-V$ and $U-B$ colors with the brightness has been revealed. The spectral energy distribution for V1027~Cyg from our photometry in the range 0.36 ($U$)-5.0 ($M$) $mu$m corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range $lambda$4400--9200 AA were taken during 16 nights over the period 1995--2015. At the 1995 and 2011 photometric minima the stars spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0--M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca~II triplet in the spectrum of V1027~Cyg. The calcium triplet (Ca T) with $W_{lambda}(mathrm{Ca~T})=20.3pm1.8$ AA as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G--K supergiants. V1027 Cyg has been identified with the infrared source IRAS~20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.



قيم البحث

اقرأ أيضاً

We present the multi-color, five-year light curves and the first radial velocities of the near-contact binary system KR Cyg. We derived the masses of the components as 2.88$pm$0.20 M$_{odot}$ and 1.26$pm$0.07 M$_{odot}$ and the radii as 2.59$pm$0.06 R$_{odot}$ and 1.80$pm$0.04 R$_{odot}$. Analyses of the UBVR light curves and the radial velocities indicate that none of the components exactly fill their corresponding Roche lobes. We have calculated the distance to the system of KR Cyg as {411$pm$12} pc using the observed apparent UBV magnitudes and the bolometric corrections for the component stars. We also searched for the empirical determination of albedo and effective temperature of the cooler, less massive star of KR Cyg, and of two similar near contact binaries AK CMi, and DO Cas. The residuals between the observed and computed fluxes are attributed to the effect of mutual illumination which heats the surface layers of the illuminated star and does vary not only its bolometric albedo but also its limb-darkening coefficient and gravity-brightening exponent. The analysis of the light curves shows that the effective albedos are generally smaller than that expected from an envelope of convective star, being mostly departed from the theoretical value at the B passband. As the reflected light diminishes the effective temperature and, therefore, the luminosity of the irradiated star increase. The observed bluer U-B colors during primary minimum are attributed to the effects of mutual irradiation and multiple scattering processes which may alter several characteristics of these systems.
Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive stars in more detail, we present a study of the O9.2Ib supergiant $zeta$ Ori Aa, the only currently confirmed supergiant to host a magnetic field. We have obtained two-color space-based BRIght Target Explorer photometry (BRITE) for $zeta$ Ori Aa during two observing campaigns, as well as simultaneous ground-based, high-resolution optical CHIRON spectroscopy. We perform a detailed frequency analysis to detect and characterize the stars periodic variability. We detect two significant, independent frequencies, their higher harmonics, and combination frequencies: the stellar rotation period $P_{mathrm{rot}} = 6.82pm0.18$ d, most likely related to the presence of the stable magnetic poles, and a variation with a period of $10.0pm0.3$ d attributed to circumstellar environment, also detected in the H$alpha$ and several He I lines, yet absent in the purely photospheric lines. We confirm the variability with $P_{mathrm{rot}}$/4, likely caused by surface inhomogeneities, being the possible photospheric drivers of the discrete absorption components. No stellar pulsations were detected in the data. The level of circumstellar activity clearly differs between the two BRITE observing campaigns. We demonstrate that $zeta$ Ori Aa is a highly variable star with both periodic and non-periodic variations, as well as episodic events. The rotation period we determined agrees well with the spectropolarimetric value from the literature. The changing activity level observed with BRITE could explain why the rotational modulation of the magnetic measurements was not clearly detected at all epochs.
We present the results of the study of the contact binary system BO CVn. We have obtained physical parameters of the components based on combined analysis of new, multi-color light curves and spectroscopic mass ratio. This is the first time the latte r has been determined for this object. We derived the contact configuration for the system with a very high filling factor of about 88 percent. We were able to reproduce the observed light curve, namely the flat bottom of the secondary minimum, only if a third light has been added into the list of free parameters. The resulting third light contribution is significant, about 20-24 percent, while the absolute parameters of components are: M1=1.16, M2=0.39, R1=1.62 and R2=1.00 (in solar units). The O-C diagram shows an upward parabola which, under the conservative mass transfer assumption, would correspond to a mass transfer rate of dM/dt = 6.3 times 10-8Modot/yr, matter being transferred from the less massive component to the more massive one. No cyclic, short-period variations have been found in the O-C diagram (but longer-term variations remain a possibility)
161 - Jian-Ying Bai 2020
We conducted photometric and spectroscopic observations for Ross 15 in order to further study the flare properties of this less observed flare star. A total of 28 B-band flares are detected in 128 hours of photometric observations, leading to a total flare rate of 0.22(+-0.04) hour^-1, more accurate than that provided by previous work. We give the energy range of the B-band flare (10^29.5 - 10^31.5 erg) and the FFD for the star. Within the same energy range, the FFD are lower than that of GJ 1243 (M4) and YZ CMi (M4.5), roughly in the middle of those of three M5-type stars and higher than the average FFDs of spectral types >= M6. We performed, for the first time to Ross 15, simultaneous high-cadence spectroscopic and photometric observations, resulting in detection of the most energetic flare in our sample. The intensity enhancements of the continuum and Balmer lines with significant correlations between them are detected during the flare, which is same with that of the other deeply studied flare stars of the similar spectral type.
99 - W. Li , X. Wang , J. Vinko 2018
Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically-confirmed type Ia supernova (SN Ia) observed in the $Kepler$ field. The $Kepler$ data revealed an excess emission in its early light curve, allowing to place interesting constraints o n its progenitor system (Dimitriadis et al. 2018, Shappee et al. 2018b). Here, we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3$pm$0.3 days and $Delta$m$_{15}(B)=0.96pm$0.03 mag, but it seems to have bluer $B - V$ colors. We construct the uvoir bolometric light curve having peak luminosity as 1.49$times$10$^{43}$erg s$^{-1}$, from which we derive a nickel mass as 0.55$pm$0.04M$_{odot}$ by fitting radiation diffusion models powered by centrally located $^{56}$Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of $^{56}$Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a non-degenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia, but is characterized by prominent and persistent carbon absorption features. The C II features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in a SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا