ﻻ يوجد ملخص باللغة العربية
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model and many extensions thereof, one often encounters more mass scales of comparable magnitude. For this reason, a numerical approach for the evaluation of three-loop vacuum integrals with arbitrary mass pattern is proposed here. Concretely, one can identify a basic set of three master integral topologies. With the help of dispersion relations, each of these can be transformed into one-dimensional or, for the most complicated case, two-dimensional integrals in terms of elementary functions, which are suitable for efficient numerical integration.
TVID is a program for the numerical evaluation of general three-loop vacuum integrals with arbitrary masses. It consists of two parts. An algebraic module, implemented in Mathematica, performs the separation of the divergent pieces of the master inte
In order to prepare the ground for evaluating classes of three-loop sum-integrals that are presently needed for thermodynamic observables, we take a fresh and systematic look on the few known cases, and review their evaluation in a unified way using
We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version o
We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimension
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram dete