ترغب بنشر مسار تعليمي؟ اضغط هنا

BiTeCl and BiTeBr: a comparative high-pressure optical study

199   0   0.0 ( 0 )
 نشر من قبل Iris Crassee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We here report a detailed high-pressure infrared transmission study of BiTeCl and BiTeBr. We follow the evolution of two band transitions: the optical excitation $beta$ between two Rashba-split conduction bands, and the absorption $gamma$ across the band gap. In the low pressure range, $p< 4$~GPa, for both compounds $beta$ is approximately constant with pressure and $gamma$ decreases, in agreement with band structure calculations. In BiTeCl, a clear pressure-induced phase transition at 6~GPa leads to a different ground state. For BiTeBr, the pressure evolution is more subtle, and we discuss the possibility of closing and reopening of the band gap. Our data is consistent with a Weyl phase in BiTeBr at 5$-$6~GPa, followed by the onset of a structural phase transition at 7~GPa.

قيم البحث

اقرأ أيضاً

152 - A. Akrap , J. Teyssier , A. Magrez 2014
We present a comparative study of the optical properties - reflectance, transmission and optical conductivity - and Raman spectra of two layered bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized in the a-b planes. Despite different space groups, the optical properties of the two compounds are very similar. Both materials are doped semiconductors, with the absorption edge above the optical gap which is lower in BiTeBr (0.62 eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two materials. A non-Drude free carrier contribution in the optical conductivity, as well as three Raman and two infrared phonon modes, are observed in each compound. There is a dramatic difference in the highest infrared phonon intensity for the two compounds, and a difference in the doping levels. Aspects of the strong electron-phonon interaction are identified. Several interband transitions are assigned, among them the low-lying absorption $beta$ which has the same value 0.25 eV in both compounds, and is caused by the Rashba spin splitting of the conduction band. An additional weak transition is found in BiTeCl, caused by the lower crystal symmetry.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment s on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
We performed X-ray diffraction and electrical resistivity measurement up to pressures of 5 GPa and the first-principles calculations utilizing experimental structural parameters to investigate the pressure-induced topological phase transition in BiTe Br having a noncentrosymmetric layered structure (space group P3m1). The P3m1 structure remains stable up to pressures of 5 GPa; the ratio of lattice constants, c/a, has a minimum at pressures of 2.5 - 3 GPa. In the same range, the temperature dependence of resistivity changes from metallic to semiconducting at 3 GPa and has a plateau region between 50 and 150 K in the semiconducting state. Meanwhile, the pressure variation of band structure shows that the bulk band-gap energy closes at 2.9 GPa and re-opens at higher pressures. Furthermore, according to the Wilson loop analysis, the topological nature of electronic states in noncentrosymmetric BiTeBr at 0 and 5 GPa are explicitly revealed to be trivial and non-trivial, respectively. These results strongly suggest that pressure-induced topological phase transition in BiTeBr occurs at the pressures of 2.9 GPa.
Co$_3$O$_4$, ZnFe$_2$O$_4$, CoFe$_2$O$_4$, ZnCo$_2$O$_4$, and Fe$_3$O$_4$ thin films were fabricated by pulsed laser deposition at high and low temperatures resulting in crystalline single-phase normal, inverse, as well as disordered spinel oxide thi n films with smooth surface morphology. The dielectric function, determined by spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 8.5 eV, is compared with the magneto-optical response of the dielectric tensor, investigated by magneto-optical Kerr effect (MOKE) spectroscopy in the spectral range from 1.7 eV to 5.5 eV with an applied magnetic field of 1.7 T. Crystal field, inter-valence and inter-sublattice charge transfer transitions, and transitions from O$_{2p}$ to metal cation 3d or 4s bands are identified in both the principal diagonal elements and the magneto-optically active off-diagonal elements of the dielectric tensor. Depending on the degree of cation disorder, resulting in local symmetry distortion, the magneto-optical response is found to be strongest for high crystal quality inverse spinels and for disordered normal spinel structure, contrary to the first principle studies of CoFe$_2$O$_4$ and ZnFe$_2$O$_4$. The results presented provide a basis for deeper understanding of light-matter interaction in this material system that is of vital importance for device-related phenomena and engineering.
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of the low-pressure phase and was previously observed in compounds isostructural to SrMoO4. A possible mechanism for the transition is proposed and its character is discussed in terms of the present data and the Landau theory. Finally, the EOS is reported and the anisotropic compressibility of the studied crystal is discussed in terms of the compression of the Sr-O and Mo-O bonds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا