ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the effectiveness of Deep Convolutional Neural Network based Fast Random Forest Classifier

231   0   0.0 ( 0 )
 نشر من قبل Mrutyunjaya Panda
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Learning is considered to be a quite young in the area of machine learning research, found its effectiveness in dealing complex yet high dimensional dataset that includes but limited to images, text and speech etc. with multiple levels of representation and abstraction. As there are a plethora of research on these datasets by various researchers , a win over them needs lots of attention. Careful setting of Deep learning parameters is of paramount importance in order to avoid the overfitting unlike conventional methods with limited parameter settings. Deep Convolutional neural network (DCNN) with multiple layers of compositions and appropriate settings might be is an efficient machine learning method that can outperform the conventional methods in a great way. However, due to its slow adoption in learning, there are also always a chance of overfitting during feature selection process, which can be addressed by employing a regularization method called dropout. Fast Random Forest (FRF) is a powerful ensemble classifier especially when the datasets are noisy and when the number of attributes is large in comparison to the number of instances, as is the case of Bioinformatics datasets. Several publicly available Bioinformatics dataset, Handwritten digits recognition and Image segmentation dataset are considered for evaluation of the proposed approach. The excellent performance obtained by the proposed DCNN based feature selection with FRF classifier on high dimensional datasets makes it a fast and accurate classifier in comparison the state-of-the-art.

قيم البحث

اقرأ أيضاً

This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a p roposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.
Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively opera te a motor vehicle. We studied the effectiveness of eight de-identification algorithms using human perceivers and a state-of-the-art deep convolutional neural network (CNN). We used a standard face recognition experiment in which human subjects studied high-resolution (studio-style) images to learn driver identities. Subjects were tested subsequently on their ability to recognize those identities in low-resolution videos depicting the drivers operating a motor vehicle. The videos were in either unmasked format, or were masked by one of the eight de-identification algorithms. All masking algorithms lowered identification accuracy substantially, relative to the unmasked video. In all cases, identifications were made with stringent decision criteria indicating the subjects had low confidence in their decisions. When matching the identities in high-resolution still images to those in the masked videos, the CNN performed at chance. Next, we examined CNN performance on the same task, but using the unmasked videos and their masked counterparts. In this case, the network scored surprisingly well on a subset of mask conditions. We conclude that carefully tested de-identification approaches, used alone or in combination, can be an effective tool for protecting the privacy of individuals captured in videos. We note that no approach is equally effective in masking all stimuli, and that future work should examine possible methods for determining the most effective mask per individual stimulus.
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle intera ctions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
In this paper, we propose a deep learning framework based on randomized neural network. In particular, inspired by the principles of Random Vector Functional Link (RVFL) network, we present a deep RVFL network (dRVFL) with stacked layers. The paramet ers of the hidden layers of the dRVFL are randomly generated within a suitable range and kept fixed while the output weights are computed using the closed form solution as in a standard RVFL network. We also propose an ensemble deep network (edRVFL) that can be regarded as a marriage of ensemble learning with deep learning. Unlike traditional ensembling approaches that require training several models independently from scratch, edRVFL is obtained by training a single dRVFL network once. Both dRVFL and edRVFL frameworks are generic and can be used with any RVFL variant. To illustrate this, we integrate the deep learning networks with a recently proposed sparse-pretrained RVFL (SP-RVFL). Extensive experiments on benchmark datasets from diverse domains show the superior performance of our proposed deep RVFL networks.
425 - Lawrence Huang 2020
We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Lyman-alpha forest. We train a Neural Network using redshift z=3 outputs from cosmological hydrodynamic simulations and mock datasets constru cted from them. We evaluate how well the trained network is able to reconstruct the optical depth for Lyman-alpha forest absorption from noisy and often saturated transmitted flux data. The Neural Network outperforms an alternative reconstruction method involving log inversion and spline interpolation by approximately a factor of 2 in the optical depth root mean square error. We find no significant dependence in the improvement on input data signal to noise, although the gain is greatest in high optical depth regions. The Lyman-alpha forest optical depth studied here serves as a simple, one dimensional, example but the use of Deep Learning and simulations to approach the inverse problem in cosmology could be extended to other physical quantities and higher dimensional data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا