ﻻ يوجد ملخص باللغة العربية
Deep Learning is considered to be a quite young in the area of machine learning research, found its effectiveness in dealing complex yet high dimensional dataset that includes but limited to images, text and speech etc. with multiple levels of representation and abstraction. As there are a plethora of research on these datasets by various researchers , a win over them needs lots of attention. Careful setting of Deep learning parameters is of paramount importance in order to avoid the overfitting unlike conventional methods with limited parameter settings. Deep Convolutional neural network (DCNN) with multiple layers of compositions and appropriate settings might be is an efficient machine learning method that can outperform the conventional methods in a great way. However, due to its slow adoption in learning, there are also always a chance of overfitting during feature selection process, which can be addressed by employing a regularization method called dropout. Fast Random Forest (FRF) is a powerful ensemble classifier especially when the datasets are noisy and when the number of attributes is large in comparison to the number of instances, as is the case of Bioinformatics datasets. Several publicly available Bioinformatics dataset, Handwritten digits recognition and Image segmentation dataset are considered for evaluation of the proposed approach. The excellent performance obtained by the proposed DCNN based feature selection with FRF classifier on high dimensional datasets makes it a fast and accurate classifier in comparison the state-of-the-art.
This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a p
Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively opera
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle intera
In this paper, we propose a deep learning framework based on randomized neural network. In particular, inspired by the principles of Random Vector Functional Link (RVFL) network, we present a deep RVFL network (dRVFL) with stacked layers. The paramet
We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Lyman-alpha forest. We train a Neural Network using redshift z=3 outputs from cosmological hydrodynamic simulations and mock datasets constru