ﻻ يوجد ملخص باللغة العربية
We investigate the two-dimensional $q=3$ and 4 Potts models with a variable interaction range by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges as expressed by the number $z$ of equivalent neighbors. For not too large $z$, the transitions fit well in the universality classes of the short-range Potts models. However, at longer ranges the transitions become discontinuous. For $q=3$ we locate a tricritical point separating the continuous and discontinuous transitions near $z=80$, and a critical fixed point between $z=8$ and 12. For $q=4$ the transition becomes discontinuous for $z > 16$. The scaling behavior of the $q=4$ model with $z=16$ approximates that of the $q=4$ merged critical-tricritical fixed point predicted by the renormalization scenario.
We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number $z$ of equivalent
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena:
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration
We compute the crossover exponents of all quadratic and cubic deformations of critical field theories with permutation symmetry $S_q$ in $d=6-epsilon$ (Landau-Potts field theories) and $d=4-epsilon$ (hypertetrahedral models) up to three loops.We use
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete