ﻻ يوجد ملخص باللغة العربية
We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well observed clusters we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of $<M/L_V>=1.98 pm 0.03$, which agrees very well with the expected M/L ratio if the initial mass function of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease of the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand $M_odot$ in them. The only clear exception is $omega$ Cen, where the velocity dispersion profile provides strong evidence for the presence of a $sim$40,000 $M_odot$ IMBH in the centre of the cluster.
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de
Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info
The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of g
Using the Next Generation Very Large Array (ngVLA), we will make a comprehensive inventory of intermediate-mass black holes (IMBHs) in hundreds of globular cluster systems out to a distance of 25 Mpc. IMBHs have masses of about 100 to 100,000 solar m