ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Instability of Exo-Moon System Triggered by Photo-Evaporation

49   0   0.0 ( 0 )
 نشر من قبل Ji-Wei Xie
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radius shrinks and its moons increase their orbital semi-major axes and eccentricities. When some moons approach their critical semi-major axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exo-moons are less common for close-in planets ($<0.1$ AU), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.



قيم البحث

اقرأ أيضاً

We show that dense OGLE and KMTNet $I$-band survey data require four bodies (sources plus lenses) to explain the microlensing light curve of OGLE-2015-BLG-1459. However, these can equally well consist of three lenses and one source (3L1S), two lenses and two sources (2L2S) or one lens and three sources (1L3S). In the 3L1S and 2L2S interpretations, the host is a brown dwarf and the dominant companion is a Neptune-class planet, with the third body (in the 3L1S case) being a Mars-class object that could have been a moon of the planet. In the 1L3S solution, the light curve anomalies are explained by a tight (five stellar radii) low-luminosity binary source that is offset from the principal source of the event by $sim 0.17,au$. These degeneracies are resolved in favor of the 1L3S solution by color effects derived from comparison to MOA data, which are taken in a slightly different ($R/I$) passband. To enable current and future ($WFIRST$) surveys to routinely characterize exomoons and distinguish among such exotic systems requires an observing strategy that includes both a cadence faster than 9 min$^{-1}$ and observations in a second band on a similar timescale.
Interfacial stability is important for many processes involving heat and mass transfer across two immiscible phases. When this transfer takes place in the form of evaporation of a binary solution with one component being more volatile than the other, gradients in surface tension can arise. These gradients can ultimately destabilise the liquid-gas interface. In the present work, we study the evaporation of an ethanol-water solution, for which ethanol has a larger volatility. The solution is contained in a horizontal Hele-Shaw cell which is open from one end to allow for evaporation into air. A Marangoni instability is then triggered at the liquid-air interface. We study the temporal evolution of this instability by observing the effects that it has on the bulk of the liquid. More specifically, the growth of convective cells is visualized with confocal microscopy and the velocity field close to the interface is measured with micro-particle-image-velocimetry. The results of numerical simulations based on quasi 2D equations satisfactorily compare with the experimental observations, even without consideration of evaporative cooling, although this cooling can play an extra role in experiments. Furthermore, a linear stability analysis applied to a simplified version of the quasi 2D equations showed reasonably good agreement with the results from simulations at early times, when the instability has just been triggered and no coarsening has taken place. In particular, we find a critical Marangoni number below which a regime of stability is predicted.
Close-in planets evolve under extreme conditions, raising questions about their origins and current nature. Two predominant mechanisms are orbital migration, which brings them close to their star, and atmospheric escape under the resulting increased irradiation. Yet, their relative roles remain unclear because we lack models that couple the two mechanisms with high precision on secular timescales. To address this need, we developed the JADE code, which simulates the secular atmospheric and dynamical evolution of a planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the 3D evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical properties, inner heating, and the evolving stellar irradiation, which results, in particular, in photo-evaporation. The JADE code is benchmarked on GJ436 b, prototype of evaporating giants on eccentric, misaligned orbits at the edge of the hot Neptunes desert. We confirm that its orbital architecture is well explained by Kozai migration and unveil a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong evaporation several Gyr after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in planets. This suggests that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by migration. It strengthens the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE code will allow simulating for a wide range of systems.
We develop a new retrieval scheme for obtaining two-dimensional surface maps of exoplanets from scattered light curves. In our scheme, the combination of the L1-norm and Total Squared Variation, which is one of the techniques used in sparse modeling, is adopted to find the optimal map. We apply the new method to simulated scattered light curves of the Earth, and find that the new method provides a better spatial resolution of the reconstructed map than those using Tikhonov regularization. We also apply the new method to observed scattered light curves of the Earth obtained during the two-year DSCOVR/EPIC observations presented by Fan et al. (2019). The method with Tikhonov regularization enables us to resolve North America, Africa, Eurasia, and Antarctica. In addition to that, the sparse modeling identifies South America and Australia, although it fails to find the Antarctica maybe due to low observational weights on the poles. Besides, the proposed method is capable of retrieving maps from noise injected light curves of a hypothetical Earth-like exoplanet at 5 pc with noise level expected from coronagraphic images from a 8-m telescope. We find that the sparse modeling resolves Australia, Afro-Eurasia, North America, and South America using 2-year observation with a time interval of one month. Our study shows that the combination of sparse modeling and multi-epoch observation with 1 day or 5 days per month can be used to identify main features of an Earth analog in future direct imaging missions such as the Large UV/Optical/IR Surveyor (LUVOIR).
High spatial resolution observations of protoplanetary disks (PPDs) by ALMA have revealed many details that are providing interesting constraints on the disk physics as well as dust dynamics, both of which are essential for understanding planet forma tion. We carry out high-resolution, 2D global hydrodynamic simulations, including the effects of dust feedback, to study the stability of dusty rings. When the ring edges are relatively sharp and the dust surface density becomes comparable to the gas surface density, we find that dust feedback enhances the radial gradients of both the azimuthal velocity profile and the potential vorticity profile at the ring edges. This eventually leads to instabilities on meso-scales (spatial scales of several disk scale heights), causing dusty rings to be populated with many compact regions with highly concentrated dust densities on meso-scales. We also produce synthetic dust emission images using our simulation results and discuss the comparison between simulations and observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا